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Abstract

We present an approach to testing climate models with observations. In this approach, it is possible to directly
observe the longwave feedbacks of the climate system in timeseries of annual average outgoing longwave spectra.
Tropospheric temperature, stratospheric temperature, water vapor, and carbon dioxide have clear and distinctive
signatures in the infrared spectrum, and it is possible to detect trends of these signals unambiguously from trends
in the outgoing longwave spectrum by optimal detection techniques. We apply this approach to clear-sky data in
the Tropics simulated from the output of an ensemble of climate models. Estimates of the water vapor-longwave
feedback by this approach agree to within estimated errors with truth, and it is likely that an uncertainty of
50% can be obtained in twenty years of a continuous timeseries. The correlation of tropospheric temperature
and water vapor anomalies can provide a constraint on the water vapor-longwave feedback to 5% uncertainty in
twenty years, or 7% in ten years. Thus, it should be possible to place a strong constraint on climate models, which
currently show a range of 30% in the water vapor-longwave feedback, in just ten years’ time. These results may
not hold in the presence of clouds, however, and so it may be necessary to supplement timeseries of outgoing
longwave spectra with GPS radio occultation data, which is insensitive to clouds.

1. Introduction

Under prescribed forcing scenarios, sophisticated
global climate models still vary by approximately a fac-
tor of 2 in their projections for future trends in the global
atmosphere. In the third assessment report of the In-
tergovernmental Panel on Climate Change (IPCC), cli-
mate models ranged from 2K to 5K in the projections
for global average surface air temperature increase in re-
sponse to a doubling of carbon dioxide (Houghton et al.
2001). Roughly the same range of projections is found
in the ensemble of climate models assembled for the
IPCC’s Fourth Assessment Report (AR4). Even though
it has recently been shown that climate models realize
different radiative forcing for the same increases in well-
mixed greenhouse gases (Collins et al. 2006), neverthe-
less much of the uncertainty in climate projection arises
from the manner in which different climate models re-
spond to the radiative forcing by increasing well-mixed
greenhouse gases. If a capability to predict future cli-
mates on interdecadal time scales is desired, it will be
necessary to test the projections of current climate mod-
els using credible data sets (Goody et al. 1998, 2002)
and to verify that these projections are made for the cor-

rect physical reasons.

Climate models vary in their projections of fu-
ture climates because of the disparate ways that model
physics are implemented. The physics of a climate
model is a term commonly invoked to refer to param-
eterizations of physical processes that cannot be inte-
grated by the equations of motion because they are un-
resolved spatially and/or temporally by a climate model.
While there might be a most ideal tuning of the param-
eters of model physics, uncertainty in those parameters
implies a wide range of model response to a prescribed
radiative forcing scenario. An alternative way of view-
ing model response to prescribed radiative forcing is
through the paradigm of radiative feedbacks: surface
warming can lead to trends in other climate variables
which might in turn increase or decrease radiative forc-
ing of the troposphere (North et al. 1981). A recent pa-
per offered a review of radiative feedbacks in the atmo-
sphere, particular the uncertainties associated with each
(Bony et al. 2006). Even if a climate model accurately
predicts trends in global surface air temperature, that
model will only gain widespread credibility if it does
so through the right combination of radiative feedbacks.
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Hence, some way of observing not only overall climate
sensitivity but also individual radiative feedbacks is nec-
essary.

The recent emergence of climate benchmark data of-
fers the potential to constrain climate models accord-
ing to their predictive capability. Here we refer to a
data set as a climate benchmark if it is repeatable over
arbitrarily long time baselines in such a way that de-
rived trends are broadly credible. Technologically, this
is done by assuring that the observations are made trace-
able to international standards (Pollock et al. 2003) and
sampling is adequate. In laboratory work it has also
been shown that high spectral resolution thermal in-
frared radiance spectra can be made traceable to inter-
national standards (Dykema and Anderson 2006), and it
has also been shown that high spectral resolution out-
going longwave radiation is a potential climate bench-
mark when satellite-borne (Anderson et al. 2004; Kirk-
Davidoff et al. 2005). The NOAA/NASA Decadal Sur-
vey of the U.S. National Research Council has called
for the deployment of such an instrument (National Re-
search Council, Committee on Earth Science and Appli-
cations from Space 2007). It has yet to be shown how
trends in the outgoing longwave spectrum might be used
to test the projections of climate models.

The outgoing longwave spectrum (OLS) is poten-
tially rich in information content on the radiative bal-
ance of the climate system. By virtue of outgoing long-
wave radiation’s role in the energy balance of the cli-
mate system, it should also be possible to use outgo-
ing longwave spectra to observe the climate’s response
to radiative forcing and the feedbacks involved. Kiehl
(1983) suggested using theν2 rotational band of CO2
in the infrared to prove greenhouse forcing of the cli-
mate. Charlock (1984) supported this point with more
sophisticated simulations of emitted radiance spectra
and showed that trends in carbon dioxide and tempera-
ture would have distinctive spectral signatures over long
time periods if observed with sufficiently high spectral
resolution. Slingo and Webb (1997) augmented these
points with a simulation of a trend in specific humid-
ity and suggested that the water vapor-longwave feed-
back might be discernible in trends in the emitted in-
frared spectrum. They left the question of how one
might discern the water vapor-longwave feedback us-
ing trend data an open one. Harries et al. (2001) have
shown that the difference between two thermal infrared
data sets obtained 27 years apart reveals the increased
radiative forcing by individual greenhouse gases. In this
paper, we show how one can discern radiative forcing by
carbon dioxide and longwave feedbacks in trends of the
emitted infrared spectrum. We perform a study similar
to that of Leroy et al. (2006) to discover how outgoing

longwave spectra can be used to test climate models. As
in Leroy et al. (2006), we use optimal detection methods
(Hasselmann 1993, 1997; North et al. 1995), but here we
seek to simultaneously detect multiple climate signals—
rather than just a single climate signal—and establish
the probability that observed trends are not the results
of natural variations of the climate.

The ensemble of runs of climate models by the In-
tergovernmental Panel for Climate Change’s Fourth As-
sessment Report, now the World Climate Research Pro-
gramme’s (WCRP’s) Coupled Model Intercomparison
Project phase 3 (CMIP3) multi-model dataset, offers an
opportunity to test the methodology we propose by sim-
ulating artificial data sets. Because the CMIP3 archive
provides model output of three-dimensional pressure,
temperature and humidity fields but little on cloud prop-
erties, it is only possible to simulate clear sky radiance;
hence, we cannot at this point investigate how outgoing
longwave spectra might constrain the cloud-longwave
feedback. Nevertheless, we are still able to investi-
gate how outgoing longwave spectra might be used to
constrain the water vapor-longwave feedback. Because
the outgoing longwave spectrum is so strongly influ-
enced by clouds, our conclusions concerning detectibil-
ity of the water vapor-longwave feedback come with the
strong caveat that a final analysis must in some way ac-
count for the influence of clouds on longwave spectra.
Bony et al. (2006) show that the climate models in the
CMIP3 archive have water vapor-longwave feedbacks
that range from 1.5 to2.2 W m−2 K−1. A useful test
of these climate models should provide a more precise
observation of the water vapor-longwave feedback than
spanned by the CMIP3 models.

In the second section of this paper we discuss the
formulation of the problem of detecting climate sig-
nals in outgoing longwave spectra. We account for sig-
nal shape uncertainty in optimal detection (Huntingford
et al. 2006). In the third section we present the results of
our exercise in optimal detection using simulated outgo-
ing longwave spectra. In the fourth section we discuss
the implications for testing climate models. In the fifth
and final section we present a summary and conclusions.

2. Formulation of the problem

We adopt the view of climate feedbacks presented
in Wetherald and Manabe (1988) which has also been
adopted elsewhere (Held and Soden 2000; Colman
2003; Bony et al. 2006; Soden and Held 2006). In this
view, surface temperature plays the dominant role in
cooling the Earth system. Fluctuations in this longwave
cooling are directly proportional to surface temperature
fluctuations∆T , and are thus writtenΓ ∆T . Other me-
teorological variables and atmospheric constituents act
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to either enhance or suppress the radiation emitted from
the Earth system, again proportionally to∆T . These are
the atmospheric feedbacks, and they are defined as

γLW
i ≡

∂FLW

∂xi

dxi

dT
(1)

γSW
i ≡

∂F SW

∂xi

dxi

dT
(2)

Γ ≡ −
∂FLW

∂T
(3)

with FLW andF SW being the downward longwave and
shortwave fluxes at the tropopause andxi the value of
any group of meteorological variables or the concen-
tration of any atmospheric constituent that then gives
its name to the feedback. If a radiative perturbation is
applied to the climate by an anthropogenic consituent,
then the climate re-achieves radiative balance by chang-
ing surface temperature such that the radiative forcing
∆Frad is balanced by a net change in shortwave and
longwave radiation at the tropopause:

∆Frad +
∑

i

γLW
i ∆T +

∑

i

γSW
i ∆T = Γ ∆T, (4)

the solution for the response∆T being

∆T = ∆Frad

[

Γ −
∑

i

γLW
i −

∑

i

γSW
i

]

−1

. (5)

The longwave and shortwave feedback gain terms (γLW
i

andγSW
i ) act to suppress the net surface temperature re-

sponse when negative and act to enhance the response
when positive.

In the longwave, the individual feedback gain terms
have corresponding spectral signatures because the
change in radiative flux due to a change in a sin-
gle meteorological variable or atmospheric constituent
(∂FLW

ν /∂xi) is distinctive. The gain terms and surface
blackbody term are decomposed spectrallyγLW

ν,i as

γLW
ν,i =

∂FLW
ν

∂xi

dxi

dT
(6)

Γν = −
∂FLW

ν

∂T
. (7)

The integrals over frequencyν of the spectrally decom-
posed feedback gains give the feedback gainsγi. Be-
cause the individualγLW

ν,i have distinct spectral struc-
ture, it should be possible to identify how much each
feedback has contributed to trends in the emitted long-
wave spectrum. Optimal detection is ideally suited to
this task because it is intended to distinguish between
different signals according to the distinctive features of
their patterns and because it seeks out those components

of the signal which are associated with relatively little
natural interannual variability.

First we describe how we form spectral infrared sig-
natures and then we describe how we apply optimal de-
tection with an accounting for signal shape uncertainty
to trends in the outgoing longwave spectrum.

a. Spectral infrared signals

Bony et al. (2006) present three methods of diag-
nosing feedbacks in a climate model. We use the ap-
proach to which they refer as the partial radiative per-
turbation approach (PRP), as do Held and Soden (2000)
and Soden and Held (2006), in their survey of the wa-
ter vapor feedback in the CMIP3 models. In the PRP
approach, the radiative impact of water vapor is deter-
mined by comparing the outgoing longwave radiation,
as determined by the model’s radiative transfer algo-
rithm run off-line, from the evolving temperature and
humidity fields to the outgoing longwave radiation from
the evolving temperature field but with humidity fixed
at its initial values. These radiation calculations are per-
formedafter the climate model, with temperature and
humidity fields varying according to the usual prognos-
tic equations, has been run.

Instead of using a model’s radiative transfer mod-
ule to compute the radiative influence of water vapor,
we instead use MODTRAN version 4 (Berk et al. 1998)
run in its clear-sky mode at1 cm−1 resolution to obtain
the spectral signature of the outgoing longwave radia-
tion. Additionally, instead of subtracting outgoing ra-
diation of the first ten years of a model run from the
last ten years, we use linear regression over a long time-
series of outgoing longwave spectra. In particular, if we
take humidity asq, temperature asT , each dependent on
a longitude-latitude coordinater, pressurep, month of
yearm and yeart, we find the best linear fit forT and
q over the first 50 years of model output of a forced run
by

T (r, p, m, t) = T0(r, p, m) (8)

+ t
dT

dt
(r, p, m) + dT (r, p, m, t)

ln q(r, p, m, t) = ln q0(r, p, m) (9)

+ t
d ln q

dt
(r, p, m) + d ln q(r, p, m, t)

where slopesdT/dt, d ln q/dt and interceptsT0, q0 are
determined by ordinary linear regression anddT and
d ln q are the departures of temperature and specific hu-
midity from a straight line due to natural inter-annual
variability. In the construction of the spectral signal
corresponding to longwave forcing by water vapor, we
compute two timeseries of outgoing longwave spectra,
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one with both temperature and specific humidity varying
(Iν,1), and the other with temperature varying but with
specific humidity fixed to its intercept valueq0 (Iν,2).
Here we letFν represent the forward radiance calcula-
tion as performed by MODTRAN:

Iν,1(r, m, t) = Fν(T (r, p, m, t), q(r, p, m, t)) (10)

Iν,2(r, m, t) = Fν(T (r, p, m, t), q0(r, p, m)). (11)

The radiative forcing signature of water vapor is found
by subtracting the trend ofIν,2 from the trend ofIν,1,
both found by linear regression over the first 50 years
of a forced run. The dimensions of the signal, then,
are (power) (area)−1 (frequency)−1 (solid angle)−1

(time)−1.
In Fig. 1 we illustrate how spectral infrared sig-

nals are constructed. We have computed five radiance
spectra trends based on fixing various combinations of
carbon dioxide, temperature, stratospheric temperature,
and specific humidity at their intercept values by form-
ing appropriate linear combinations. For example, in or-
der to obtain the carbon dioxide signal, we subtract the
simulation with carbon dioxide fixed from a like simu-
lation but with carbon dioxide increasing. Likewise, in
order to obtain the longwave spectral signature of tro-
pospheric temperature, we subtract the simulation with
carbon dioxide and tropospheric temperature fixed from
the simulation with carbon dioxide fixed but with tropo-
spheric temperature changing according to model out-
put.

We distinguish between tropospheric temperature
trends and stratospheric temperature trends because
temperature response to increased carbon dioxide in the
two regions depends on different physics. The climate
feedbacks do not apply as strongly in the stratosphere,
where radiative balance is achieved in large part by ra-
diative cooling by carbon dioxide. Also, the pattern of
stratospheric cooling simulated by the different CMIP3
models cannot be expected to agree because of their dif-
ferent methods of accounting for ozone. For these rea-
sons we distinguish between trends in outgoing long-
wave radiance spectra due to tropospheric temperature
trends and stratospheric temperature trends. We define
the tropical stratosphere as all model levels above (lower
pressures than) 100 hPa. For our purposes, the definition
of the stratosphere need not be any more rigorous than
this; whatever the flaws in the definition of the strato-
sphere, a proper accounting for signal shape uncertainty
(see below) should make up the deficit.

The lower panel of Fig. 1 shows the four signals we
choose to detect in outgoing longwave spectral radiance
trends: a carbon dioxide signalsCO2

, a tropospheric
temperature signalsTtrop

, a stratospheric temperature
signal sTstrat

, and a water vapor signalswater vapor.

They are related to the feedbacks in Eq. 3 by

sCO2
= −

∂Fν,rad

∂[CO2]

d[CO2]

dt
(12)

sTtrop
= (Γν − γν,lapse rate) ×

dT

dt
(13)

sTstrat
= −

∂FLW

∂Tstrat

dTstrat

dt
(14)

swater vapor = −γν,water vapor ×
dT

dt
. (15)

All signals are constructed over the Tropics only, de-
fined to lie within 25◦S and 25◦N. We have used the
output of the SRES-A1B radiative forcing scenario to
construct the signals and performed linear regressions
over the first 50 yrs of output. The carbon dioxide signal
is the same as that produced in Charlock (1984) and the
other signals are the same as those produced in Slingo
and Webb (1997).

b. Optimal detection

Optimal detection techniques allow a determination
of the amplitude of one or multiple signals with pre-
scribed shape(s) in a timeseries of data in a way that
minimizes the influence of naturally occurring fluctua-
tions of the climate system. Optimal detection is com-
plicated by an ambiguous inversion of a covariance ma-
trix describing natural variability. Allen and Tett (1999)
give a criterion for truncation of the matrix inversion
that calls for consistency between post-fit residuals and
the prescription of natural variability. This approach has
been used in most climate signal detection and attribu-
tion studies (Hegerl et al. 2000; Stott et al. 2000b,a;
Tett et al. 2002; Santer et al. 2003). Application of
this approach to detection in the infrared spectrum leads
to a truncation of the signal space so severe that opti-
mal detection no longer succeeds in detecting signals on
decadal time scales. We instead adopt the approach to
optimal detection that includes signal shape uncertainty.

Optimal detection that includes signal shape uncer-
tainty (Huntingford et al. 2006) resolves the ambigu-
ity in inverting the natural variability covariance matrix
by considering uncertainties in the prescribed signals’
shapes. Components of natural variability that are un-
dersampled are generally associated with fine-scale de-
tails of climate signal shapes, and standard optimal de-
tection methods inappropriately skew detection toward
those components. In accounting for uncertainty in sig-
nals’ shapes, those components become irrelevant, thus
stabilizing detection. Posterior uncertainty estimates for
the presence of a signal in a timeseries of data asymp-
tote to a non-zero value with increasing truncation of
the detection space when uncertainty in signal shape is
accounted for.
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FIG. 1. Construction of spectral infrared signals. The top panel shows spectral radiance trends from five simula-
tions of trends in outgoing longwave radiance spectra: the full signal, carbon dioxide fixed to its intercept value
(red), carbon dioxide and temperature fixed to their intercept values (green), carbon dioxide and stratospheric
temperature fixed to their intercept values (turquoise), and carbon dioxide and specific humidity fixed to their in-
tercept values (blue). The lower panel shows the deduced radiance signals: the carbon dioxide signal (red), the
tropospheric temperature signal (green), the stratospheric temperature signal (turquoise), and the specific humidity
signal (blue). The ordinate’s units areW cm−2 ster−1( cm−1)−1 yr−1. The first 50 years of the SRES-A1B run
of the NCAR CCSM3 climate model were used. Spectra are spatially averaged over the Tropics, 25◦S to 25◦N.

Briefly, standard optimal detection assumes pre-
scribed signal shapessi, eigenvectors and eigenvalues
of the natural variability covarianceΣv areeµ andλµ,
and the posterior amplitudesαm and uncertaintiesΣα

of optimal detection with data vectord are

αm = G
−1

h

Σα = G
−1 (16)

where the elements of matrixG and vectorh are

Gij =

k
∑

µ=1

λ−1
µ 〈eµ, si〉 〈eµ, sj〉

hi =

k
∑

µ=1

λ−1
µ 〈eµ, si〉 〈eµ,d〉. (17)

Taken together, Eqs. 16 and 17 are the equations of lin-
ear multi-pattern regression, or optimal detection. The

αm is a vector containing scaling factors for each of
the signals, the combination of which best explains the
data. The angle brackets〈· · · , · · ·〉 indicate inner prod-
ucts governed by any definition of an inner product as
long as the eigenvalues and eigenvectors ofΣ, which is
defined below, are determined by〈Σ, eµ〉 = λµeµ. The
quantityk determines the truncation of the space of de-
tection. With inclusion of signal shape uncertainty, the
signal shapes become means of signal shapes as deter-
mined by an ensemble of independent climate models,
and the uncertainty covarianceΣu is

Σu = 〈

m
∑

i,j=1

sisj
T 〉. (18)

(In this case the angle brackets represent averages over
an ensemble of signal shapes of independent climate
models.) We normalize the signal shapes using anL1

norm: for each model-predicted signal shape, the sig-
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nal is scaled so that its integral over frequency is the
same as for the same signal as predicted by all other
models. Such a normalization permits a simple inter-
pretation for posterior signal amplitudesαm: they rep-
resent the trends in outgoing longwave radiation asso-
ciated with the different signals. Accounting for signal
shape uncertainty requires thatΣ = Σv + Σu andeµ

andλµ are the eigenvectors and eigenvalues ofΣ.
In the case of the outgoing longwave spectrum, tem-

perature in the stratosphere and upper tropospheric wa-
ter vapor are the primary contributors to the signal shape
uncertaintyΣu. The form of temperature change in
the stratosphere is substantially different from model to
model in the CMIP3 archive because of the variety of
implementations of stratospheric ozone. The models’
differing schemes of cumulus convection and cloud pa-
rameterizations lead to different forms of water vapor
trends, especially in the tropical upper troposphere. By
accounting for these uncertainties in the signals in the
outgoing longwave spectrum, optimal detection essen-
tially searches for other components of the signals for
optimization. The final estimate of signals’ uncertain-
ties Σα will incorporate the signal shape uncertainties
as an additional source of “error”.

3. Sensitivity analysis

We apply the methodology of optimal detection as
described above to the problem of detecting a carbon
dioxide signal, a tropospheric warming signal, a strato-
spheric cooling signal, and a specific humidity signal
in outgoing longwave radiance data. The 1801-element
data vector is the trend in the annual average outgoing
infrared radiance spectrum from 200 to 2000 cm−1 with
1 cm−1 spectral resolution. Climate models do not sim-
ulate the same patterns of change in the infrared spec-
trum due to trends in the temperature and specific hu-
midity fields, even when spectral trends are normalized
by the integral in frequency. Because the tropical tro-
posphere, however, tends to maintain a moist adiabatic
temperature profile up to approximately 200 hPa (Xu
and Emanuel 1989; Santer et al. 2003), we restrict our
analysis to the tropics, which we define to be the global
region between 25◦S and 25◦N, in order to reduce un-
certainty in the signal shapes in the infrared spectrum
associated with trends in temperature and water vapor.

While it has been conventional to define a lapse rate
feedback as distinct from the mean surface air tempera-
ture response, in the tropics the two are so strongly cor-
related that we consider surface air (and surface) tem-
perature response as part of the same signal as the re-
sponse of tropospheric upper air temperature. With the
exception of one of six models, the OLR due to trop-
ical tropospheric temperature trends and tropical sur-

face temperature trends fall onto a straight line with
slope Λ = 5.04 ± 0.06 W m−2 K−1. This agrees
with Held and Soden (2000), who use a global value
of ≈ 4 W m−2 K−1 in their discussion of the water
vapor feedback with the negative tropical lapse rate
feedback (γ ≃ −1 W m−2 K−1) considered because
Λ = Γ − γlapse rate, γlapse rate representing the feed-
back induced by changes in tropospheric upper air tem-
perature, known as the “lapse rate” feedback. We use
this value ofΛ in our remaining analysis. One model
omitted from the linear fit was omitted because it ro-
bustly predicts cooling of the central tropical Pacific sea
surface temperature thus biasing its surface temperature
trend lower than it would be with a more spatially uni-
form surface temperature trend.

We apply optimal detection using an estimate of nat-
ural variability given by a 400-yr pre-industrial control
run of ECHAM5-MPI/OM. In order to reduce the influ-
ence of the stratosphere in the optimal detection prob-
lem still further, we suppress temperature variations in
the stratosphere. We do this by using only the monthly
mean value of temperature in the stratosphere, as a func-
tion of position, in the radiance calculations. The nat-
ural variability covariance was constructed using area-
weighted averages over the tropics annually averaged.
The first six eigenvectors of the natural variability ac-
count for99.97% of the interannual variability of the
outgoing longwave spectrum.

We show the detection amplitudes and uncertain-
ties for the tropospheric temperature and water vapor
signals in Fig. 2. The amplitudesαm and uncertain-
ties Σα are scaled by the integral over frequency of
the relevant signal used in detection and multiplied by
π to account approximately for the integral over solid
angle. Conversion of radiance spectra to flux spec-
tra by multiplying by π does not affect our conclu-
sions in any way. The detection assumes a 20-yr con-
tinuous timeseries of outgoing longwave spectra, aver-
aged annually over the tropics. The “data” is the time-
series of outgoing longwave spectra simulated using the
SRES-A1B output of GFDL CM2.0. Optimal detec-
tion is applied using the four signals with mean sig-
nal shapes and uncertainty covarianceΣu determined
by six CMIP3 models: GFDL CM2.0, GISS E-H,
MIROC 3.2 (medium resolution), ECHAM5-MPI/OM,
NCAR CCSM3, and UKMO HadCM3. Fig. 2 shows
the effect of increasing the number of eigenvectors
of truncation (k in Eq. 17) on signal detection. At
least four eigenmodes are required for detection to pro-
vide sufficient determinacy. With increasing numbers
of eigenmodes retained, the tropospheric temperature
radiance trend signal asymptotes quickly to0.94 ±
0.42 W m−2 decade−1 and the water vapor radiance
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FIG. 2. Optimal detection with signal shape uncertainty taken into consideration. In the plot on the left we show
estimates of the tropospheric temperature signal and on theright the water vapor signal as a function of the number
of eigenmodes retained in detection. Both amplitudes are scaled by the integral of the signal over frequency and
multiplied byπ steradians. The thick and thin solid lines show the detection amplitudes with one-sigma uncertainty
for signal detection accounting for uncertainty in signal shapes.

trend asymptotes to−0.59 ± 0.66 W m−2 decade−1.
The uncertainties are one-sigma uncertainties and ac-
count for natural variability. The true numbers for the
tropospheric temperature radiance trend and the water
vapor radiance trend, found by linear regression of the
first 50 years of the SRES-A1B of GFDL CM2.0, are
1.27 and−0.76 W m−2 decade−1, respectively.

We show the joint probability of detection of the
tropospheric temperature radiance and water vapor sig-
nals with 50 eigenmodes retained in detection in Fig. 3.
In composing this error covariance ellipse, we have se-
lected the2×2 sub-matrix of the4×4 covariance matrix
Σα (Eq. 16) corresponding to the tropospheric temper-
ature and specific humidity signals. The resulting one-
sigma probability ellipse describes the joint probability
distribution of detecting these two signals with complete
ignorance of the other two signals. A one-sigma ellipse
in two-dimensions represents a 39% confidence of de-
tection, the probability that the actual long-term tropo-
spheric temperature and water vapor signals present in
the climate of GFDL-CM2.0 fall within this one-sigma
ellipse. By including more eigenmodes in detection,
we include more information, and the area of the er-
ror covariance ellipse must decrease, yet because signal
shapes are considered uncertain, the ellipse asymptotes
to one with non-zero volume.

The high anti-correlation between the detection of
the tropospheric temperature and water vapor signals
arises because their signal shapes (c.f. Fig. 1) are similar
but opposite in sign. If a positive error is made in esti-

mating the OLR change due to tropospheric temperature
change, then the data can only be explained by mak-
ing an equal and opposite error in estimating the OLR
change due to water vapor.

It is more appropriate to estimate posterior uncer-
tainty by detector timeseries analysis than by prescrip-
tion of natural variability given by a model because de-
tector timeseries analysis is mostly insensitive to a par-
ticular prescription of natural variability. In Fig. 4 we
show the timeseries of detection amplitudes for each of
the four signals as a function of time. We calculate a
timeseries of detection amplitudes by computing the in-
ner product of optimal fingerprints with annual average,
tropical mean outgoing longwave spectra. The optimal
fingerprints are the columns ofF where

F = G
−1

H

Hi =

k
∑

µ=1

λ−1
µ 〈eµ, si〉 eµ (19)

in whichHi is thei’th row of matrixH. Eq. 19 is to be
used in conjunction with Eqs. 16 and 17. The timeseries
of detection amplitudes is given by

α(ti) = 〈F,d(ti)〉 (20)

with α(ti) a timeseries of detectors and the right hand
side the inner product of the optimal fingerprintsF

on annual average anomaly spectrumd(ti). The data
anomalyd(ti) is just an annual average, tropical aver-
age, mean-subtracted outgoing longwave spectrum for
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FIG. 3. Detection ellipses for 20-yr trends as simulated by GFDLCM2.0. Detection fingerprints were constructed
using the mean signals constructed from the first 50 years of the SRES-A1B forced run of six CMIP3 models and
natural variability as constructed from the 400-yr pre-industrial control run of ECHAM5-MPI/OM with strato-
spheric temperature variability suppressed. Interannualvariability is assumed to be mostly uncorrelated from year
to year in estimating error covariance ellipses. A 1-σ detection ellipse is given for inclusion of 50 eigenmodes
in detection. The axes are outgoing longwave radiance trends in time due to tropospheric temperature and water
vapor change.

year i. The detection problem is the same as the one
posed for Fig. 3. Detection amplitudes are scaled by the
integral of the uncertain signals over frequency with an
extra factor ofπ to account approximately for the hemi-
spheric integral. The true outgoing longwave radiation
(OLR) anomalies, as determined by PRP directly for the
GFDL CM2.0 SRES-A1B run, are also shown for each
of the four signals in Fig. 4. The detector timeseries
compare favorably to the “truth” timeseries because the
signal shapes span a sub-space of the data vector that a
large fraction of natural variability occupies. In other
words, the typical forms taken by natural fluctuations of
the outgoing longwave spectrum look quite similar to
the signals we are seeking to detect.

Linear regression of the tropospheric temperature
and water vapor signals’ amplitude timeseries enables
us to estimate the water vapor-longwave feedback. We
find the slopes of the tropospheric temperature ampli-
tude and water vapor amplitude timeseries (αtemp and

αwv) in Fig. 4 and then compute the departures of those
timeseries (δα′) from the best fit lines. The uncertainty
covariance of the trendsαm is

Σ
′

α = 〈δα′ δα′T 〉. (21)

The water vapor-longwave feedback is justγ = Λ−1 ×
αwater vapor/αTtrop

, αwater vapor and αTtrop
being the

elements ofαm multiplying the water vapor and tropo-
spheric temperature signals. The uncertainty in the feed-
backσγ , using the timeseries anomalies as computed in
Eq. 21 to estimate error, is

σ2
γ = (∇αγ)T

Σ
′

α (∇αγ) (22)

where∇αγ is the Jacobian ofγ with respect toα. In
the timeseries of detectors shown in Fig. 4, the wa-
ter vapor longwave feedback isγ = 3.20 W m−2 K−1

with an uncertainty ofσγ = 1.85 W m−2 K−1.
The “true” water vapor-longwave feedback is3.30 ±
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FIG. 4. Detection amplitude timeseries for four signals. The solid squares show detection amplitudes for each of
four detected signals. We have converted detection amplitudes to anomalies in outoing longwave radiation (OLR)
by integrating over frequency and multiplying byΛ, which relates fluctuations in surface temperature to fluctua-
tions in outgoing longwave radiation. The open squares showtrue OLR anomalies for each of the four signals.
The thin solid line is the best linear fit to the detection amplitudes and its slopes are in exact agreement with Fig. 3.
Note the expanded range for the stratospheric temperature and carbon dioxide signals’ amplitudes.

1.85 W m−2 K−1 as determined by normal partial ra-
diative perturbation (PRP) analysis on the models’ out-
put variables. Even determination of the true water
vapor-longwave feedback in a climate model is compli-
cated by the presence of natural variability. As a conse-
quence of the signals spanning much the same space as
natural variability, using other models for prescriptions
of natural variability and as artificial data does not sig-
nificantly affect the result that optimal detection of in-
frared signals takes an inordinately long time to provide
a viable test for climate models.

The amplitude timeseries for the tropospheric tem-
perature signal and the water vapor signal are strongly
anticorrelated. This is true for both the optimal detection
amplitudes (detectors) and the true OLR timeseries, and

so it is a reflection of the physics of the climate system.
On time scales of a year, a fluctuation of temperature in
the Tropics is directly proportional to radiative forcing
by water vapor. In Fig. 5 we show scatterplots of the wa-
ter vapor detectors vs. tropospheric temperature detec-
tors when using artificial data produced by six CMIP3
models. The artificial data are MODTRAN simulations
of the first 20 years of the SRES-A1B runs. Both detec-
torsα(ti) (see Eq. 20) and true OLR anomalies associ-
ated with tropospheric temperature fluctuations and wa-
ter vapor fluctuations are shown. The strong anticorre-
lation between the tropospheric temperature signal and
the water vapor signal is borne out. The slope of the best
fit line divided byΛ, which relates the tropospheric tem-
perature signal to surface air temperature trends, yields
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the water vapor-longwave feedback in the tropics, pro-
vided that water vapor and temperature are similarly re-
lated on yearly and interdecadal timescales. The uncer-
tainty in the determination of the feedback is the uncer-
tainty in the slope of the line in the panels of Fig. 5. The
uncertainty is expected to be proportional to the inverse
square-root of the number of points in the scatterplot.

In Table 1 we present the results of feedback analy-
sis using simulated data taken from the same six CMIP3
models, comparing the strategies of feedback determi-
nation by linear trend analysis and by anomaly correla-
tion analysis. We present “true” evaluations of the feed-
backs for context. Both analysis strategies were per-
formed using 20-yr timeseries of simulated data based
on SRES-A1B runs of the six models. The uncer-
tainty estimates of the feedback determination by lin-
ear trend analysis are due to interannual variability for
the “truth” and are primarily due to interannual vari-
ability but with a small contribution from errors in op-
timal detection for the data. On the other hand, the
uncertainty estimates of the feedback determination by
anomaly correlation analysis are due primarily to small
breakdowns in the relationship between tropical temper-
ature and humidity with an additional influence of error
caused by signal shape uncertainty. The table demon-
strates that a 20-yr trend in outgoing longwave spec-
tra in the tropics will provide a 30% constraint on the
water vapor-longwave feedback. Anomaly correlation
analysis, though, can provide a constraint of≈ 5% on
the water vapor-longwave feedback in the tropics with
a 20-yr timeseries of observations of the outgoing long-
wave spectrum. Analysis of the water vapor-longwave
feedback by anomaly correlation is expected to have ac-
curacy directly proportional toN−1/2 whereN is the
number of years in the timeseries. Thus, with timeseries
of infrared spectra in the tropics as short as 10 yrs, it
should be possible to distinguish between the climate
models of the CMIP3 ensemble whose spread in water
vapor-longwave feedback is approximately 20%.

4. Summary and Conclusions

The Earth’s emitted infrared spectrum can be ex-
pected to change on interannual time scales in such
a way that the relative contribution of various green-
house gases can be determined. Previous authors have
pointed in this direction. We have demonstrated that
optimal detection techniques, when applied to trends in
the Earth’s emitted infrared spectrum, can yield strong
observational constraints on radiative forcing by well-
mixed anthropogenic greenhouse gases, carbon dioxide
in particular, and the longwave feedbacks of the atmo-
sphere. An optimal detection exercise using simulated
data gives estimates of the amount of time necessary be-

fore a timeseries of spectral infrared data is useful for
testing climate models.

In our analysis, we have shown that signals asso-
ciated with radiative forcing by carbon dioxide, tropo-
spheric warming, stratospheric cooling, and the water
vapor feedback should be unambiguously discernible in
trends in the outgoing longwave spectrum of the trop-
ics. We have used an optimal detection technique that
includes an accounting for uncertainty in the longwave
spectral signal shapes on artificial data (Huntingford
et al. 2006). We are able to distinguish a water va-
por radiance signal and the tropospheric temperature
radiance signal from the signals due to carbon diox-
ide forcing and stratospheric temperature response to an
accuracy< 0.1 W m−2 ster−1. We found that trends
in a 20-yr timeseries of annual average, tropical aver-
age outgoing longwave spectra will provide a constraint
on the water vapor-longwave feedback in the Tropics
with ≈ 30% accuracy. The dominant contributor to
the accuracy estimate is interannual variability, and the
accuracy of the feedback estimate is directly propor-
tional to (∆t)−3/2, ∆t being the length of the time-
series (Leroy et al. 2007). On the other hand, over the
same 20 year interval it is possible to establish a rela-
tionship between the anomalies in outgoing longwave
radiation associated with water vapor and tropospheric
temperature, and from that relationship it is possible to
estimate a short-term water vapor-longwave feedback to
within 5% uncertainty. This latter method’s uncertainty
is inversely proportional to the square-root of the length
of the timeseries, so a ten-year timeseries can be ex-
pected to yield a 7% determination of the tropical water
vapor-longwave feedback. The short-term water vapor-
longwave feedback agrees with the decadal water vapor-
longwave feedback to within error in our study.

Linear trend analysis may give only loose con-
straints on the water vapor-longwave feedback, but
consideration of the spatial component to the long-
wave spectral signal may provide additional information
needed to refine the test. In the case of GPS radio occul-
tation, it was found that poleward migration of the mid-
latitude jet streams provided much of the information in
detection of climate change (Leroy et al. 2006), and that
signal should also be apparent in latitudinal gradients of
the tropospheric temperature longwave spectral signal.
A spectral-spatial longwave signal analysis should pro-
vide more signal-to-noise in detection than just a tropi-
cal average spectral longwave signal.

A sound implementation of signal shape uncertainty
into optimal detection requires a complete accounting
of all sources of uncertainty in climate projection. Mod-
els are known to have shortcomings in common, such
as an inability to simulate phenomena such as the quasi-
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Linear Trend Analysis Anomaly Correlation Analysis
(W m−2 K−1) (W m−2 K−1)

Truth Data Truth Data
GFDL CM2.0 3.30 ± 1.85 3.20 ± 1.85 2.75 ± 0.20 2.53 ± 0.18
GISS E-H 2.63 ± 0.81 2.95 ± 0.62 2.61 ± 0.10 2.94 ± 0.12
MIROC 3.2 (medres) 2.81 ± 0.85 2.53 ± 0.62 2.68 ± 0.13 2.49 ± 0.10
ECHAM5-MPI/OM 3.14 ± 1.60 3.53 ± 1.81 2.98 ± 0.08 3.36 ± 0.10
NCAR CCSM3 2.80 ± 0.92 2.81 ± 0.91 2.66 ± 0.17 2.66 ± 0.16
UKMO HadCM3 3.10 ± 1.48 2.65 ± 1.15 2.78 ± 0.09 2.74 ± 0.11

TABLE 1. Water vapor-longwave feedback analysis strategies. We compare linear trend analysis and anomaly
correlation analysis as potential strategies for constraining the water vapor-longwave feedback with a timeseries of
observations of the outgoing longwave spectrum of the tropics. In linear trend analysis, trends in the tropospheric
temperature signal and the water vapor signal are detected in the outgoing longwave spectrum and divided to esti-
mate the water vapor-longwave feedback. In anomaly correlation analysis, a linear relationship is found between
interannaul anomalies in the detected water vapor signal and interannual anomalies in the detected tropospheric
temperature signal. “Truth” is derived from PRP calculations taken directly from climate model output, and “data”
is derived from optimal detection in simulated outgoing longwave spectra by MODTRAN based on climate model
output.

biennial and Madden-Julian oscillations (Baldwin et al.
2001; Lin et al. 2006), so the climate models contribut-
ing to the CMIP3 archive cannot be considered complete
in spanning uncertainty in climate prediction. More-
over, we used only six of the CMIP3 models in account-
ing for signal shape uncertainty, a small number. For
this reason, we used one of the same six models to stand
in for data to demonstrate the viability of the approach
presented herein. In a future application of this method-
ology to satellite data, it will be necessary to account for
a broader space of signal shape uncertainty than is con-
tained in this paper. One possibility is to use the output
of a much larger ensemble of climate models such that
a more complete spanning of the space of uncertainty
is obtained. Another possibility is to expand the space
of uncertainty as determined with a small ensemble of
climate models artificially by adding variance without
additional covariance. In the latter case especially, good
judgment is required.

The work presented here is done for clear-sky calcu-
lations only, due to limitations of the available archive
of CMIP3 model output. The techniques we have
used, though, can be expected to work in much the
same way for observationally constraining the cloud-
longwave feedback, as long as model output is available
that is necessary to the simulation of outgoing radiance
spectra in cloudy skies. Because the longwave spectral
signature of clouds is expected to be very similar to the
signature of surface temperature, in realistic cloudy sky
conditions it may not be possible to unambiguously de-
termine the temperature response of the climate system
in longwave spectra alone. The cloud-insensitive sound-

ing technique of GPS radio occultation may be required
as part of the analysis. In any case, we have demon-
strated that a timeseries of longwave spectra in as brief
a time as ten years should provide a strong constraint
on climate models’ realization of longwave feedbacks.
If the timeseries of spectral data is intermittent, the de-
tection time is increased depending upon the length of
the gaps in the timeseries. If only two annual average
snapshots are obtained, Leroy et al. (2007) can be used
to show that 13 years between the two snapshots gives
the same signal-to-noise of detection as does ten years
of continuous data.
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FIG. 5. Water vapor-longwave feedback by anomaly correlation.We have used annual average, tropical aver-
age outgoing longwave spectra as simulated by six CMIP3 models as artificial data for optimal detection of OLR
contributed by tropospheric temperature and water vapor. For each model, the detection amplitudes are plotted as
filled squares and the true OLR anomalies are plotted as open squares. The solid line is the best fit to the detection
amplitudes, and the dashed line is the best fit to the true OLR anomalies.
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