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Abstract

We present an approach to testing climate models with oagens. In this approach, itis possible to directly
observe the longwave feedbacks of the climate system irsénes of annual average outgoing longwave spectra.
Tropospheric temperature, stratospheric temperaturerwapor, and carbon dioxide have clear and distinctive
signatures in the infrared spectrum, and it is possible teadé¢rends of these signals unambiguously from trends
in the outgoing longwave spectrum by optimal detection népies. We apply this approach to clear-sky data in
the Tropics simulated from the output of an ensemble of démmaodels. Estimates of the water vapor-longwave
feedback by this approach agree to within estimated errds twuth, and it is likely that an uncertainty of
50% can be obtained in twenty years of a continuous timesefi@e correlation of tropospheric temperature
and water vapor anomalies can provide a constraint on therwapor-longwave feedback to 5% uncertainty in
twenty years, or 7% in ten years. Thus, it should be possiljieice a strong constraint on climate models, which
currently show a range of 30% in the water vapor-longwaveliaek, in just ten years’ time. These results may
not hold in the presence of clouds, however, and so it may bessary to supplement timeseries of outgoing
longwave spectra with GPS radio occultation data, whichsemsitive to clouds.

1. Introduction rect physical reasons.

Under prescribed forcing scenarios, sophisticated Climate models vary in their projections of fu-
global climate models still vary by approximately a fadure climates because of the disparate ways that model
tor of 2 in their projections for future trends in the globgdhysics are implemented. The physics of a climate
atmosphere. In the third assessment report of the medel is a term commonly invoked to refer to param-
tergovernmental Panel on Climate Change (IPCC), dditerizations of physical processes that cannot be inte-
mate models ranged from 2K to 5K in the projectiongrated by the equations of motion because they are un-
for global average surface air temperature increase inresolved spatially and/or temporally by a climate model.
sponse to a doubling of carbon dioxide (Houghton et &llhile there might be a most ideal tuning of the param-
2001). Roughly the same range of projections is fourters of model physics, uncertainty in those parameters
in the ensemble of climate models assembled for timaplies a wide range of model response to a prescribed
IPCC's Fourth Assessment Report (AR4). Even thougdiative forcing scenario. An alternative way of view-
it has recently been shown that climate models realirgy model response to prescribed radiative forcing is
different radiative forcing for the same increases in wellirough the paradigm of radiative feedbacks: surface
mixed greenhouse gases (Collins et al. 2006), neverth@rming can lead to trends in other climate variables
less much of the uncertainty in climate projection aris@gich might in turn increase or decrease radiative forc-
from the manner in which different climate models rang of the troposphere (North et al. 1981). A recent pa-
spond to the radiative forcing by increasing well-mixeger offered a review of radiative feedbacks in the atmo-
greenhouse gases. If a capability to predict future cliphere, particular the uncertainties associated with each
mates on interdecadal time scales is desired, it will fBony et al. 2006). Even if a climate model accurately
necessary to test the projections of current climate mqaedicts trends in global surface air temperature, that
els using credible data sets (Goody et al. 1998, 2008@pdel will only gain widespread credibility if it does
and to verify that these projections are made for the cae through the right combination of radiative feedbacks.
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Hence, some way of observing not only overall climatengwave spectra can be used to test climate models. As
sensitivity but also individual radiative feedbacks ishem Leroy et al. (2006), we use optimal detection methods
essary. (Hasselmann 1993, 1997; North et al. 1995), but here we

The recent emergence of climate benchmark data 8?_ek to simultaneously detect multiple climate signals—
ther than just a single climate signal—and establish

fers the potential to constrain climate models accorr(ﬁ- .
ing to their predictive capability. Here we refer to the probablhty t_hat observe(_j trends are not the results
data set as a climate benchmark if it is repeatable O\(/)épatural variations of the cllmgte.

arbitrarily long time baselines in such a way that de- 'h€ énsemble of runs of climate models by the In-
rived trends are broadly credible. Technologically, thi§"90vernmental Panel for Climate Change’s Fourth As-
is done by assuring that the observations are made tra?fés-smer,'t Report, now the World Climate Research Pro-
able to international standards (Pollock et al. 2003) affmmes (WCRP's) Coupleo! Model Intercomparison
sampling is adequate. In laboratory work it has aldg@i€ct phase 3 (CMIP3) multi-model dataset, offers an
been shown that high spectral resolution thermal jAPPOTtuNity to test the methodology we propose by sim-
frared radiance spectra can be made traceable to inti@ling artificial data sets. Because the CMIP3 archive
national standards (Dykema and Anderson 2006), an@lipvides model OUtpl_Jt_Of _three-dlm_ensmnal pressure,
has also been shown that high spectral resolution otgmperature and humidity fields but little on cloud prop-

going longwave radiation is a potential climate bencfities, itis only possible to simulate clear sky radiance;

mark when satellite-borne (Anderson et al. 2004; Kirlence, we cannot at this point investigate how outgoing

Davidoff et al. 2005). The NOAA/NASA Decadal Sur_longwave spectra might constrain the cloud-longwave
vey of the U.S. National Research Council has callfgedback.  Nevertheless, we are still able to investi-

for the deployment of such an instrument (National rgate how outgoing longwave spectra might be used to

search Council, Committee on Earth Science and Appqpnstrain the water vapor-longwave feedback. Because

cations from Space 2007). It has yet to be shown hdlff 0utgoing longwave spectrum is so strongly influ-

trends in the outgoing longwave spectrum might be us%laced by clouds, our conclusions concerning det_ectlbll-
to test the projections of climate models. ity of the water vapor-longwave feedback come with the

. . strong caveat that a final analysis must in some way ac-
_The outgoing longwave spectrum (OLS) is potergpunt for the influence of clouds on longwave spectra.
tially rich in information content on the radiative ba'Bony et al. (2006) show that the climate models in the
ance of the climate system. By virtue of outgoing longz\jp3 archive have water vapor-longwave feedbacks
wave radiation’s role in the energy balance of the clinat range from 1.5 t@.2 Wm™2 K~'. A useful test
mate system, it should also be possible to use outggthese climate models should provide a more precise
ing longwave spectra to observe the climate’s respongigservation of the water vapor-longwave feedback than
to radiative forcing and the feedbacks involved. K'el%'panned by the CMIP3 models.
(1983) suggested using the rotational band of C® | the second section of this paper we discuss the
in the infrared to prove greenhouse forcing of the Cligymuylation of the problem of detecting climate sig-
mate. Charlock (1984) supported this point with mogg,|s in outgoing longwave spectra. We account for sig-
sophisticated simulations of emitted radiance SpecHg shape uncertainty in optimal detection (Huntingford
and showed that trends in carbon dioxide and tempegaz|. 2006). In the third section we present the results of
ture would have distinctive spectral signatures over l0gg exercise in optimal detection using simulated outgo-
time periods if observed with sufficiently high spectrghq |ongwave spectra. In the fourth section we discuss
resolution. Slingo and Webb (1997) augmented thegf implications for testing climate models. In the fifth

points with a simulation of a trend in specific humidyq final section we present a summary and conclusions.
ity and suggested that the water vapor-longwave feed-

back might be discernible in trends in_the emitted irz Formulation of the problem
frared spectrum. They left the question of how oné
might discern the water vapor-longwave feedback us- We adopt the view of climate feedbacks presented
ing trend data an open one. Harries et al. (2001) haweWetherald and Manabe (1988) which has also been
shown that the difference between two thermal infraredlopted elsewhere (Held and Soden 2000; Colman
data sets obtained 27 years apart reveals the incred@@B; Bony et al. 2006; Soden and Held 2006). In this

radiative forcing by individual greenhouse gases. In thigew, surface temperature plays the dominant role in

paper, we show how one can discern radiative forcing bgoling the Earth system. Fluctuations in this longwave

carbon dioxide and longwave feedbacks in trends of theoling are directly proportional to surface temperature

emitted infrared spectrum. We perform a study similfluctuationsAT, and are thus writtef AT. Other me-

to that of Leroy et al. (2006) to discover how outgointgorological variables and atmospheric constituents act



to either enhance or suppress the radiation emitted frofmthe signal which are associated with relatively little
the Earth system, again proportionally&d". These are natural interannual variability.

the atmospheric feedbacks, and they are defined as First we describe how we form spectral infrared sig-
natures and then we describe how we apply optimal de-

A OFY dx, (1) tection with an accounting for signal shape uncertainty
’ Ox; dT to trends in the outgoing longwave spectrum.
SW 6FSW dl‘l 2
W = Ox; dT 2) a. Spectral infrared signals
r = _8FLW ©) Bony et al. (2006) present three methods of diag-
or nosing feedbacks in a climate model. We use the ap-

with FIW and FSW being the downward longwave andProach to which they refer as the partial radiative per-

shortwave fluxes at the tropopause andhe value of turbation approach (PRP), as do Held and Soden (2000)
any group of meteorological variables or the concefi?d Soden and Held (2006), in their survey of the wa-

tration of any atmospheric constituent that then givé& vapor feedback in the CMIP3 models. In the PRP

its name to the feedback. If a radiative perturbation @Proach, the radiative impact of water vapor is deter-

applied to the climate by an anthropogenic consitueflined by comparing the outgoing longwave radiation,

then the climate re-achieves radiative balance by chafg-détermined by the model's radiative transfer algo-

ing surface temperature such that the radiative forcizg"m run off-line, from the evolving temperature and

AF,.q is balanced by a net change in shortwave ah§midity fields to the outgoing longwave radiation from
longwave radiation at the tropopause: the evolving temperature field but with humidity fixed

atits initial values. These radiation calculations are per
AF.q + Z%LW AT + Z%SW AT =T AT, (4) formedafter the climate model, with temperature and
S S humidity fields varying according to the usual prognos-

tic equations, has been run.
Instead of using a model’s radiative transfer mod-
-1 ule to compute the radiative influence of water vapor,
AT = AFyaq [F - Z - Z %SW} - (3 weinstead use MODTRAN version 4 (Berk et al. 1998)

i i run in its clear-sky mode dtcm ™! resolution to obtain

The longwave and shortwave feedback gain terp’( 1€ SPectral signature of the outgoing longwave radia-
andy5W) act to suppress the net surface temperature?é’-n; Addltlonailly, instead of subtracting outgoing ra-
sponse when negative and act to enhance the respdh@ion of the first ten years of a model run from the
when positive. last ten years, we use linear regression over a long time-
In the longwave, the individual feedback gain term¥''€S of outgoing longwave spectra. In particular, if we
have corresponding spectral signatures because FHE humidity as, temperature &8, each dependenton
change in radiative flux due to a change in a sifi-longitude-latitude coordinate pressurep, month of

gle meteorological variable or atmospheric constitughfar and year, we find the best linear fit for’ and
(OF™W /az,) is distinctive. The gain terms and surfacé over the first 50 years of model output of a forced run

the solution for the respong®T being

blackbody term are decomposed spectrafy as y
L OFW da; T(r,p,m,t) = To(r,p,m) (8)
Yoi Dr AT (6) dT
Li +t —(r,p,m) +dT(r,p,m,t)
OFLW dt
FV = - oT . (7) hlq(rapvmvt) =In qo(rvpvm) (9)
dlng
The integrals over frequeneyof the spectrally decom- +1 at (r,p,m) +dlng(r,p,m,t)

posed feedback gains give the feedback gainsBe-

cause the individuat,}XV have distinct spectral struc-where slopedT/dt, d1n ¢/dt and interceptdy, qo are
ture, it should be possible to identify how much eadtetermined by ordinary linear regression aiil and
feedback has contributed to trends in the emitted longln ¢ are the departures of temperature and specific hu-
wave spectrum. Optimal detection is ideally suited toidity from a straight line due to natural inter-annual
this task because it is intended to distinguish betweegariability. In the construction of the spectral signal
different signals according to the distinctive features obrresponding to longwave forcing by water vapor, we
their patterns and because it seeks out those componeatspute two timeseries of outgoing longwave spectra,



one with both temperature and specific humidity varyinthey are related to the feedbacks in Eq. 3 by

(I,,1), and the other with temperature varying but with OFy raq d[COs]

specific humidity fixed to its intercept valug (I,2). Sco, = _8[06 1~ dr (12)
Here we letF), represent the forward radiance calcula- 2

; . dr
tion as performed by MODTRAN: SThoy = (T — Yu,lapse rate) X o (13)
Il/,l(ramat) = FV(T(rapamat)aQ(rapamvt)) (10) S - aFLW detrat (14)
v,2 (I‘, m, t) = Fl/ (T(I‘, p,m, t)v QO(rv D, m)) (11) Totras B aTstrat dt
ar
The radiative forcing signature of water vapor is found  Swater vapor =  —7v,water vapor X e (15)

by subtracting the trend df, » from the trend off, 1, All signals are constructed over the Tropics only, de-

both found by linear regression over the f|r_st 50 Ye&Red to lie within 25S and 25N. We have used the
of a forced run. The dimensions of the signal, then

1 . 1 output of the SRES-A1B radiative forcing scenario to
are (power) (area) (frequency)! (solid angley : : .
(time) L. construct the signals and performed linear regressions

, . . ._over the first 50 yrs of output. The carbon dioxide signal
In Fig. 1 we illustrate how spectral infrared sig- .

. . 2is the same as that produced in Charlock (1984) and the
nals are constructed. We have computed five radia

. ) © radiangfer signals are the same as those produced in Slingo
spectra trends based on fixing various combinations 0
o . and Webb (1997).

carbon dioxide, temperature, stratospheric temperature,
and specific humidity at their intercept values by fornb-
ing appropriate linear combinations. For example, in or-
der to obtain the carbon dioxide signal, we subtract the Optimal detection techniques allow a determination
simulation with carbon dioxide fixed from a like simuof the amplitude of one or multiple signals with pre-
lation but with carbon dioxide increasing. Likewise, iscribed shape(s) in a timeseries of data in a way that
order to obtain the longwave spectral signature of trotinimizes the influence of naturally occurring fluctua-
pospheric temperature, we subtract the simulation witbns of the climate system. Optimal detection is com-
carbon dioxide and tropospheric temperature fixed frgoticated by an ambiguous inversion of a covariance ma-
the simulation with carbon dioxide fixed but with tropotrix describing natural variability. Allen and Tett (1999)
spheric temperature changing according to model ogtve a criterion for truncation of the matrix inversion
put. that calls for consistency between post-fit residuals and

We distinguish between tropospheric temperatutiee prescription of natural variability. This approach has
trends and stratospheric temperature trends becdosen used in most climate signal detection and attribu-
temperature response to increased carbon dioxide intiba studies (Hegerl et al. 2000; Stott et al. 2000b,a;
two regions depends on different physics. The climafett et al. 2002; Santer et al. 2003). Application of
feedbacks do not apply as strongly in the stratosphettés approach to detection in the infrared spectrum leads
where radiative balance is achieved in large part by ta-a truncation of the signal space so severe that opti-
diative cooling by carbon dioxide. Also, the pattern ahal detection no longer succeeds in detecting signals on
stratospheric cooling simulated by the different CMIP&cadal time scales. We instead adopt the approach to
models cannot be expected to agree because of their diftimal detection that includes signal shape uncertainty.
ferent methods of accounting for ozone. For these rea- Optimal detection that includes signal shape uncer-
sons we distinguish between trends in outgoing longinty (Huntingford et al. 2006) resolves the ambigu-
wave radiance spectra due to tropospheric temperatityen inverting the natural variability covariance matrix
trends and stratospheric temperature trends. We defiyeconsidering uncertainties in the prescribed signals’
the tropical stratosphere as all model levels above (lovatrapes. Components of natural variability that are un-
pressures than) 100 hPa. For our purposes, the definiti@nsampled are generally associated with fine-scale de-
of the stratosphere need not be any more rigorous thaits of climate signal shapes, and standard optimal de-
this; whatever the flaws in the definition of the stratdection methods inappropriately skew detection toward
sphere, a proper accounting for signal shape uncertaititgse components. In accounting for uncertainty in sig-
(see below) should make up the deficit. nals’ shapes, those components become irrelevant, thus

The lower panel of Fig. 1 shows the four signals w&tabilizing detection. Posterior uncertainty estimates f
choose to detect in outgoing longwave spectral radiartbe presence of a signal in a timeseries of data asymp-
trends: a carbon dioxide signato,, a tropospheric tote to a non-zero value with increasing truncation of
temperature signadr,,,,, a stratospheric temperaturé¢he detection space when uncertainty in signal shape is
signal st,,,.,, and a water vapor signahater vapor- accounted for.

Optimal detection
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FiG. 1. Construction of spectral infrared signals. The top pahews spectral radiance trends from five simula-
tions of trends in outgoing longwave radiance spectra: tifiesignal, carbon dioxide fixed to its intercept value
(red), carbon dioxide and temperature fixed to their intgrelues (green), carbon dioxide and stratospheric
temperature fixed to their intercept values (turquoisel, @rbon dioxide and specific humidity fixed to their in-
tercept values (blue). The lower panel shows the deducédneeal signals: the carbon dioxide signal (red), the
tropospheric temperature signal (green), the stratogpteenperature signal (turquoise), and the specific humidit
signal (blue). The ordinate’s units avé cm ™2 ster—!( cm~1)~* yr~!. The first 50 years of the SRES-A1B run
of the NCAR CCSM3 climate model were used. Spectra are diyaizeraged over the Tropics, 25 to 25N.

Briefly, standard optimal detection assumes pres, is a vector containing scaling factors for each of
scribed signal shapes, eigenvectors and eigenvaluethe signals, the combination of which best explains the

of the natural variability covariance, aree, and)\,, data. The angle brackets -, - - -) indicate inner prod-
and the posterior amplitudes,, and uncertaintieXl, ucts governed by any definition of an inner product as
of optimal detection with data vectdrare long as the eigenvalues and eigenvectorEpivhich is
defined below, are determined k%, e,) = A\,e,. The
an = G 'h quantityk determines the truncation of the space of de-
S = G (16) tection. With inclusion of signal shape uncertainty, the

signal shapes become means of signal shapes as deter-
mined by an ensemble of independent climate models,
k and the uncertainty covariandg, is

Gij = At <e ’Si> <ensj> m
; poTm 2= (3 sis). (18)

k

hi = Y At (ewsi) (e d).  (17)

pn=1

where the elements of matr{ and vectoh are

ij=1

(In this case the angle brackets represent averages over
an ensemble of signal shapes of independent climate
Taken together, Egs. 16 and 17 are the equations of iinedels.) We normalize the signal shapes using.an

ear multi-pattern regression, or optimal detection. Tim@rm: for each model-predicted signal shape, the sig-



nal is scaled so that its integral over frequency is tifiece temperature trends fall onto a straight line with
same as for the same signal as predicted by all otisspe A = 5.04 + 0.06 Wm 2K '. This agrees
models. Such a normalization permits a simple intewxith Held and Soden (2000), who use a global value
pretation for posterior signal amplitudes,: they rep- of ~ 4 Wm ™2 K™ ! in their discussion of the water
resent the trends in outgoing longwave radiation ass@por feedback with the negative tropical lapse rate
ciated with the different signals. Accounting for signdkedback § ~ —1 W m~2 K~!) considered because
shape uncertainty requires tiat= X, + 3, ande, A = I' — Vapse rates Napse rate representing the feed-
and), are the eigenvectors and eigenvalueXof back induced by changes in tropospheric upper air tem-

In the case of the outgoing longwave spectrum, teqperature, known as the “lapse rate” feedback. We use
perature in the stratosphere and upper tropospheric Was value ofA in our remaining analysis. One model
ter vapor are the primary contributors to the signal shapmitted from the linear fit was omitted because it ro-
uncertaintyX,,. The form of temperature change irbustly predicts cooling of the central tropical Pacific sea
the stratosphere is substantially different from model soirface temperature thus biasing its surface temperature
model in the CMIP3 archive because of the variety tfiend lower than it would be with a more spatially uni-
implementations of stratospheric ozone. The modeferm surface temperature trend.

differing schemes of cumulus convection and cloud pa- apply optimal detection using an estimate of nat-

rameterizations Iegd to dlffe.rent forms of water vapgg variability given by a 400-yr pre-industrial control
trends, especially in the tropical upper troposphere. By, ot fcHAMS-MPI/OM. In order to reduce the influ-
accounting for these uncertainties in the signals in thfce of the stratosphere in the optimal detection prob-
qutgomg longwave spectrum, optimal detecﬂpn €SS8Bm still further, we suppress temperature variations in
tlaII_y §earches for ‘?thef co_mponents_ of the 5|gnals_f9{e stratosphere. We do this by using only the monthly
qptlmlzat|pq. The final estlmgte of signals Unce,rta,"?ﬁean value of temperature in the stratosphere, as a func-
ties 3, will incorporate the signal shape uncertainti&g,, ot hosition, in the radiance calculations. The nat-
as an additional source of “error”. ural variability covariance was constructed using area-
o ] weighted averages over the tropics annually averaged.
3. Sengitivity analysis The first six eigenvectors of the natural variability ac-

We apply the methodology of optimal detection a(‘sount_for99.97% of the interannual variability of the
described above to the problem of detecting a carb8H{90ing longwave spectrum.
dioxide signal, a tropospheric warming signal, a strato- We show the detection amplitudes and uncertain-
spheric cooling signal, and a specific humidity signéks for the tropospheric temperature and water vapor
in outgoing longwave radiance data. The 1801-elemaignals in Fig. 2. The amplitudas,, and uncertain-
data vector is the trend in the annual average outgoties X, are scaled by the integral over frequency of
infrared radiance spectrum from 200 to 2000cmwith  the relevant signal used in detection and multiplied by
1 cm~! spectral resolution. Climate models do not sim= to account approximately for the integral over solid
ulate the same patterns of change in the infrared spangle. Conversion of radiance spectra to flux spec-
trum due to trends in the temperature and specific ltta by multiplying by # does not affect our conclu-
midity fields, even when spectral trends are normalizeibns in any way. The detection assumes a 20-yr con-
by the integral in frequency. Because the tropical trtinuous timeseries of outgoing longwave spectra, aver-
posphere, however, tends to maintain a moist adiabatged annually over the tropics. The “data” is the time-
temperature profile up to approximately 200 hPa (Xaeries of outgoing longwave spectra simulated using the
and Emanuel 1989; Santer et al. 2003), we restrict GBRES-A1B output of GFDL CKL.0. Optimal detec-
analysis to the tropics, which we define to be the glob@bn is applied using the four signals with mean sig-
region between 2% and 28N, in order to reduce un- nal shapes and uncertainty covariar®g determined
certainty in the signal shapes in the infrared spectrlsg six CMIP3 models: GFDL CKL.0, GISS E-H,
associated with trends in temperature and water vapavIROC 3.2 (medium resolution), ECHAM5-MPI/OM,

While it has been conventional to define a lapse radtCAR CCSM3, and UKMO HadCM3. Fig. 2 shows
feedback as distinct from the mean surface air tempetiae effect of increasing the number of eigenvectors
ture response, in the tropics the two are so strongly cof-truncation § in Eq. 17) on signal detection. At
related that we consider surface air (and surface) telmast four eigenmodes are required for detection to pro-
perature response as part of the same signal as thevigde sufficient determinacy. With increasing numbers
sponse of tropospheric upper air temperature. With tbeeigenmodes retained, the tropospheric temperature
exception of one of six models, the OLR due to tropadiance trend signal asymptotes quickly G®4 +
ical tropospheric temperature trends and tropical srd2 W m~2 decade™! and the water vapor radiance
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FIG. 2. Optimal detection with signal shape uncertainty takea consideration. In the plot on the left we show
estimates of the tropospheric temperature signal and amghiethe water vapor signal as a function of the number
of eigenmodes retained in detection. Both amplitudes ateddy the integral of the signal over frequency and
multiplied by steradians. The thick and thin solid lines show the deteeatioplitudes with one-sigma uncertainty
for signal detection accounting for uncertainty in sigrteses.

trend asymptotes te-0.59 & 0.66 W m~2 decade”!. Mmating the OLR change due to tropospheric temperature
The uncertainties are one-sigma uncertainties and géange, then the data can only be explained by mak-
count for natural variability. The true numbers for th#g an equal and opposite error in estimating the OLR
tropospheric temperature radiance trend and the wetBange due to water vapor.
vapor radiance trend, found by linear regression of the It is more appropriate to estimate posterior uncer-
first 50 years of the SRES-A1B of GFDL CM), are tainty by detector timeseries analysis than by prescrip-
1.27 and—0.76 W m~2 decade ™!, respectively. tion of natural variability given by a model because de-
tector timeseries analysis is mostly insensitive to a par-
Sicular prescription of natural variability. In Fig. 4 we

; ) . i {1 Vapor YWow the timeseries of detection amplitudes for each of
nals with 50 eigenmodes retained in detection in Fig.

| ing thi . li h ‘e four signals as a function of time. We calculate a
N COMPOsINg tNiS error covanance €lipse, We NAVe g, oseries of detection amplitudes by computing the in-
lected the2 x 2 sub-matrix of thel x 4 covariance matrix

ner product of optimal fingerprints with annual average,

2. (Eq. 16) corresponding to the tropospheric temp‘?f:i)pical mean outgoing longwave spectra. The optimal

ature and specific humidity signals. The resulting Onﬁﬁgerprints are the columns §fwhere

sigma probability ellipse describes the joint probability

We show the joint probability of detection of th
tropospheric temperature radiance and water vapor

distribution of detecting these two signals with complete F — G 'H

ignorance of the other two signals. A one-sigma ellipse k

in two-dimensions represents a 39% confidence of de- H, = Z ALt ey, si) ey (19)
tection, the probability that the actual long-term tropo- p=1

spheric temperature and water vapor signals present in _ . . )

the climate of GFDL-CM2.0 fall within this one-sigmdn WhichH; is thei'th row of matrix H. Eq. 191is to be
ellipse. By including more eigenmodes in detectioHsed in cpnjuncthn W|th_Eq_s. 16 and 17. The timeseries
we include more information, and the area of the &/ detection amplitudes is given by

ror covariance ellipse must decrease, yet because signal
shapes are considered uncertain, the ellipse asymptotes
to one with non-zero volume.

a(t;) = (F,d(t:)) (20)

with «(t;) a timeseries of detectors and the right hand
The high anti-correlation between the detection sfde the inner product of the optimal fingerprirs

the tropospheric temperature and water vapor signats annual average anomaly spectrdift;). The data

arises because their signal shapes (c.f. Fig. 1) are simdapmalyd(t;) is just an annual average, tropical aver-

but opposite in sign. If a positive error is made in estkge, mean-subtracted outgoing longwave spectrum for
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FiG. 3. Detection ellipses for 20-yr trends as simulated by GEIM2.0. Detection fingerprints were constructed
using the mean signals constructed from the first 50 yeatseoSRES-A1B forced run of six CMIP3 models and
natural variability as constructed from the 400-yr predisigial control run of ECHAM5-MPI/OM with strato-
spheric temperature variability suppressed. Interanvar@bility is assumed to be mostly uncorrelated from year
to year in estimating error covariance ellipses. 4 Hetection ellipse is given for inclusion of 50 eigenmodes
in detection. The axes are outgoing longwave radiance ¢réntime due to tropospheric temperature and water
vapor change.

yeari. The detection problem is the same as the ong,) in Fig. 4 and then compute the departures of those
posed for Fig. 3. Detection amplitudes are scaled by ttimeseries {«’) from the best fit lines. The uncertainty
integral of the uncertain signals over frequency with avariance of the trends,, is

extra factor ofr to account approximately for the hemi-

spheric integral. The true outgoing longwave radiation 3!, = (6’ sa'T). (21)
(OLR) anomalies, as determined by PRP directly for the

GFDL CM2.0 SRES-A1B run, are also shown for eacihhe water vapor-longwave feedback is jyst A~" x

of the four signals in Fig. 4. The detector timeserigsvater vapor/ T+ Cwater vapor @Nd ar,,,, being the
compare favorably to the “truth” timeseries because tB€ments otx,,, multiplying the water vapor and tropo-
Signa| Shapes span a Sub_space of the data vector tl’ﬁ%@rlc temperature Signals. The Uncertainty in the feed-
large fraction of natural variability occupies. In othep@cko,, using the timeseries anomalies as computed in
words, the typical forms taken by natural fluctuations &fd- 21 to estimate error, is

the outgoing longwave spectrum look quite similar to ) —

the signals we are seeking to detect. oy = (Va7)" 2, (Va) (22)

Linear regression of the tropospheric temperatundereV v is the Jacobian of with respect tox. In
and water vapor signals’ amplitude timeseries enabtég timeseries of detectors shown in Fig. 4, the wa-
us to estimate the water vapor-longwave feedback. \tée vapor longwave feedbackis= 3.20 Wm 2 K~*
find the slopes of the tropospheric temperature amphith an uncertainty ofo, = 1.85W m 2K
tude and water vapor amplitude timeserias.{,, and The “true” water vapor-longwave feedback3s30 +
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FiG. 4. Detection amplitude timeseries for four signals. THalsguares show detection amplitudes for each of
four detected signals. We have converted detection andghtto anomalies in outoing longwave radiation (OLR)
by integrating over frequency and multiplying By which relates fluctuations in surface temperature to fluctu
tions in outgoing longwave radiation. The open squares ghesvOLR anomalies for each of the four signals.
The thin solid line is the best linear fit to the detection atnges and its slopes are in exact agreement with Fig. 3.
Note the expanded range for the stratospheric temperatdreaabon dioxide signals’ amplitudes.

1.85 Wm~ 2 K~! as determined by normal partial raso it is a reflection of the physics of the climate system.
diative perturbation (PRP) analysis on the models’ of2n time scales of a year, a fluctuation of temperature in
put variables. Even determination of the true watéfe Tropics is directly proportional to radiative forcing
vapor-longwave feedback in a climate model is comphy water vapor. In Fig. 5 we show scatterplots of the wa-
cated by the presence of natural variability. As a cond€r vapor detectors vs. tropospheric temperature detec-
quence of the signals spanning much the same spactossWhen using artificial data produced by six CMIP3
natural variability, using other models for prescriptiongodels. The artificial data are MODTRAN simulations
of natural variability and as artificial data does not sigf the first 20 years of the SRES-A1B runs. Both detec-
nificantly affect the result that optimal detection of intorsa(t;) (see Eg. 20) and true OLR anomalies associ-
frared signals takes an inordinately long time to providéed with tropospheric temperature fluctuations and wa-
a viable test for climate models. ter vapor fluctuations are shown. The strong anticorre-
lation between the tropospheric temperature signal and
The amplitude timeseries for the tropospheric terthe water vapor signal is borne out. The slope of the best
perature signal and the water vapor signal are stronghjine divided byA, which relates the tropospheric tem-

anticorrelated. This is true for both the optimal deteCtiCﬂbrature signa| to surface air temperature trends, y|e|ds
amplitudes (detectors) and the true OLR timeseries, and



the water vapor-longwave feedback in the tropics, pripre a timeseries of spectral infrared data is useful for
vided that water vapor and temperature are similarly resting climate models.
lated on yearly and interdecadal timescales. The uncer- | gyr analysis, we have shown that signals asso-

tainty in the determination of the feedback is the uncefiated with radiative forcing by carbon dioxide, tropo-
tainty in the slope of the line in the panels of Fig. 5. Th§pheric warming, stratospheric cooling, and the water
uncertainty is expected to be proportional to the inverggnor feedback should be unambiguously discernible in
square-root of the number of points in the scatterplot.iends in the outgoing longwave spectrum of the trop-

In Table 1 we present the results of feedback anajys. \we have used an optimal detection technique that
sis using simulated data taken from the same six CMIRg|udes an accounting for uncertainty in the longwave
models, comparing the strategies of feedback deterjectral signal shapes on artificial data (Huntingford
nation by linear trend analysis and by anomaly correlgr a1, 2006). We are able to distinguish a water va-
tion analysis. We present “true” evaluations of the feegor radiance signal and the tropospheric temperature
backs for context. Both analysis strategies were peigjiance signal from the signals due to carbon diox-
formed using 20-yr timeseries of simulated data basgg forcing and stratospheric temperature response to an
on SRES-A1B runs of the six models. The uncegccuracy< 0.1 W m—2 ster—1. We found that trends
tainty estimates of the feedback determination by I|ﬂ1 a 20_yr timeseries of annual average, tropical aver-
ear trend analysis are due to interannual variability fg@e outgoing longwave spectra will provide a constraint
the “truth” and are primarily due to interannual varipn the water vapor-longwave feedback in the Tropics
ability but with a small contribution from errors in opwith ~ 30% accuracy. The dominant contributor to
timal detection for the data. On the other hand, thge accuracy estimate is interannual variability, and the
uncertainty estimates of the feedback determination gycuracy of the feedback estimate is directly propor-
anomaly correlation analysis are due primarily to smahnal to (At)~3/2 At being the length of the time-
breakdowns in the relationship between tropical temp@gries (Leroy et al. 2007). On the other hand, over the
ature and humidity with an additional influence of errafgme 20 year interval it is possible to establish a rela-
caused by signal shape uncertainty. The table dem@Bnship between the anomalies in outgoing longwave
strates that a 20-yr trend in outgoing longwave spegiation associated with water vapor and tropospheric
tra in the tropics will provide a 30% constraint on thgsmperature, and from that relationship it is possible to
water vapor-longwave feedback. Anomaly correlatifstimate a short-term water vapor-longwave feedback to
analysis, though, can provide a constrainkob% on  within 5% uncertainty. This latter method’s uncertainty
the water vapor-longwave feedback in the tropics wit§ inversely proportional to the square-root of the length
a 20-yr timeseries of observations of the outgoing longf the timeseries, so a ten-year timeseries can be ex-
wave spectrum. Analysis of the water vapor-longwayRcted to yield a 7% determination of the tropical water
feedback by anomaly correlation is expected to have §gpor-longwave feedback. The short-term water vapor-
curacy directly proportional taV ~'/> where N is the |gngwave feedback agrees with the decadal water vapor-
number of years in the timeseries. Thus, with timeseri@'ﬁgwave feedback to within error in our study.
of infrared spectra in the tropics as short as 10 yrs, it | . ; .

Linear trend analysis may give only loose con-

should be possible to distinguish between the C"matFraints on the water vapor-lonawave feedback but
models of the CMIP3 ensemble whose spread in watQ'er P 9 '

vapor-longwave feedback is approximately 20% consideration of the spatial component to the long-
' wave spectral signal may provide additional information

. needed to refine the test. In the case of GPS radio occul-
4. Summary and Conclusions tation, it was found that poleward migration of the mid-

The Earth’s emitted infrared spectrum can be elatitude jet streams provided much of the information in
pected to change on interannual time scales in Slgﬁ:{ection of climate change (Le_roy et aI._2006),a_nd that
a way that the relative contribution of various greersignal should also be apparent in latitudinal gradients of
house gases can be determined. Previous authors K8¢eropospheric temperature longwave spectral signal.
pointed in this direction. We have demonstrated thAtSPectral-spatial longwave signal analysis should pro-
optimal detection techniques, when applied to trends\fl€ more signal-to-noise in detection than just a tropi-
the Earth’s emitted infrared spectrum, can yield stro§! average spectral longwave signal.
observational constraints on radiative forcing by well- A sound implementation of signal shape uncertainty
mixed anthropogenic greenhouse gases, carbon dioxite optimal detection requires a complete accounting
in particular, and the longwave feedbacks of the atmofall sources of uncertainty in climate projection. Mod-
sphere. An optimal detection exercise using simulatets are known to have shortcomings in common, such
data gives estimates of the amount of time necessary &gan inability to simulate phenomena such as the quasi-
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Linear Trend Analysis Anomaly Correlation Analysis

(Wm 2K (Wm2K™1
Truth Data Truth Data
GFDL CM2.0 3.30£1.85 3.20£1.85 2.754+0.20 2.53+£0.18
GISS E-H 2.63+0.81 2954+0.62 2.6140.10 2.94 +0.12

MIROC 3.2 (medres) 2.81 £0.85 2.53+£0.62 2.68+0.13 2.4940.10
ECHAM5-MPI/OM  3.14 £1.60 3.53+1.81 2.98+0.08 3.36 £0.10
NCAR CCSM3 2.80£092 281+091 2.66=+0.17 2.66 £0.16
UKMO HadCM3 3.10+£1.48 2.65+£1.15 2.78+0.09 2.74+£0.11

TABLE 1. Water vapor-longwave feedback analysis strategies. afgpare linear trend analysis and anomaly
correlation analysis as potential strategies for constigithe water vapor-longwave feedback with a timeseries of
observations of the outgoing longwave spectrum of the ¢odh linear trend analysis, trends in the tropospheric
temperature signal and the water vapor signal are detetthée ioutgoing longwave spectrum and divided to esti-
mate the water vapor-longwave feedback. In anomaly cdivelanalysis, a linear relationship is found between
interannaul anomalies in the detected water vapor sigrairgerannual anomalies in the detected tropospheric
temperature signal. “Truth” is derived from PRP calculasitaken directly from climate model output, and “data”
is derived from optimal detection in simulated outgoingdamve spectra by MODTRAN based on climate model
output.

biennial and Madden-Julian oscillations (Baldwin et ahg technique of GPS radio occultation may be required
2001; Lin et al. 2006), so the climate models contribués part of the analysis. In any case, we have demon-
ing to the CMIP3 archive cannot be considered completizated that a timeseries of longwave spectra in as brief
in spanning uncertainty in climate prediction. Morea time as ten years should provide a strong constraint
over, we used only six of the CMIP3 models in accountn climate models’ realization of longwave feedbacks.
ing for signal shape uncertainty, a small number. Fbrthe timeseries of spectral data is intermittent, the de-
this reason, we used one of the same six models to stéanation time is increased depending upon the length of
in for data to demonstrate the viability of the approathe gaps in the timeseries. If only two annual average
presented herein. In a future application of this methoshapshots are obtained, Leroy et al. (2007) can be used
ology to satellite data, it will be necessary to account ftw show that 13 years between the two snapshots gives
a broader space of signal shape uncertainty than is ctire same signal-to-noise of detection as does ten years
tained in this paper. One possibility is to use the outpot continuous data.

of a much larger ensemble of climate models such that

a more complete spanning of the space of uncertaidtgknowledgments. We acknowledge the modeling

is obtained. Another possibility is to expand the spageoups, the Program for Climate Model Diagnosis and
of uncertainty as determined with a small ensemble lottercomparison (PCMDI) and the WCRP’s Working
climate models artificially by adding variance withouGroup on Coupled Modelling (WGCM) for their roles
additional covariance. In the latter case especially, gomd making available the WCRP CMIP3 multi-model
judgment is required. dataset. Support of this dataset is provided by the Of-

The work presented here is done for clear-sky caldife of Science, U.S. Department of Energy. This work
lations only, due to limitations of the available archiv¥@S supported by grant ATM-0450288 of the National
of CMIP3 model output. The techniques we havecience Foundation.
used, though, can be expected to work in much the
same way for observationally constraining the cloud-
longwave feedback, as long as model output is available
that is necessary to the simulation of outgoing radiance
spectra in cloudy sk_ies. Because the Iongvx{av_e Spechxﬁgn, M. and S. Tett, 1999: Checking for model con-
s!gnature of clouds is expected to _be very _S|m|Iar tot esistency in optimal fingerprintingClimate Dyn, 15,
signature of surface temperature, in realistic cloudy sky419_434
conditions it may not be possible to unambiguously de- '
termine the temperature response of the climate systdnderson, J., J. Dykema, R. Goody, H. Hu, and D. Kirk-
in longwave spectra alone. The cloud-insensitive sound-Davidoff, 2004: Absolute, spectrally-resolved, ther-
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Fic. 5. Water vapor-longwave feedback by anomaly correlatidfe. have used annual average, tropical aver-
age outgoing longwave spectra as simulated by six CMIP3 ma@deartificial data for optimal detection of OLR
contributed by tropospheric temperature and water vapmre&ch model, the detection amplitudes are plotted as
filled squares and the true OLR anomalies are plotted as apmames. The solid line is the best fit to the detection

0 2

4-4 -2

0 2 4

Tropospheric Temperature Signal [Wm

amplitudes, and the dashed line is the best fit to the true Qlidrnalies.
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