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Abstract

Long term trends in the climate system are always partly utestby naturally occurring interannual variability.
All else being equal, the larger the natural variabilitytte less precisely one can estimate a trend in a timeseries
of data. Measurement uncertainty, though, also obscungsttem trends. We derive how measurement uncertainty
and natural interannual variability interact in inhibgithe detection of climate trends using simple linear resijoes
and show how the interaction between the two can be usedrmufate accuracy requirements for sateltitenate
benchmark missions. We find that measurement uncertainty increagestim times but only when considered in
direct proportion to natural variability. We also find th&telction times depend critically on the correlation time of
natural variability and satellite lifetime. As a conseqeenrequirements on satellite climate benchmark accuracy

and mission lifetime must be directly related to naturalafaility of the climate system and its associated correfati

times.

1. Introduction

The U.S. National Research Council, in its decadal
survey of the National Oceanic and Atmospheric Ad-
ministration (NOAA) and the National Aeronautics and
Space Administration (NASA) (National Research Coun-
cil, Committee on Earth Science and Applications from

Space 2007), has called for a new philosophy in monitdn- this note we call observations that satisfy these de-
mandsclimate benchmarks.

ing climate change from space:

dardson-orbit by fundamentally independent
methods, such that the accuracy of the record
archived today can be verified by future gen-
erations. Societal objectives also require a
long-term record not susceptible to compro-
mise by interruptions in that data record.

Design of climate observing and monitor-
ing systems from space must ensure the
establishment of global, long-term climate
records, which are ofiigh accuracy, tested

for systematic errors on-orbit, and tied to ir-
refutable standards such as those maintained
in the U.S. by the National Institute of Stan-
dards and Technology. For societal objec-
tives that require long-term climate records,
the accuracy of core benchmark observa-
tions must be verified against absolute stan-
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Climate benchmarks mark a departure from the cur-
rent paradigm of climate monitoring in which space in-
struments are assumed to be “stable”. In the stability
paradigm, the accuracy of an instrument is assumed un-
known yet unchanging. A climate data record is formed,
then, by adding offsets to each in a series of satellite in-
struments so that there is no difference between satel-
lites” measurements during periods of overlap (National
Research Council, Committee on Climate Data Records
from NOAA Operational Satellites 2004). The result
is a timeseries of measurements with no obvious dis-
continuities. Prime examples of this paradigm are the
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records of upper air temperature established using the kiton for the trendn in an V-element timeseries of datla

crowave Soundings Units aboard the NOAA series satat-timest;:

lites (Spencer and Christy 1990). Some evidence is given N N

to support the stability of the MSU instruments (Spencer _ p2) ! 4

and Christy 1993), but complications in bias adjustment " (;(tj 0°) ;dz (t: =) @

during periods of instrument temporal overlap—a proce- ~

dure which must be undertaken because the instrumehgeret is the mean of the times. A determination of

accuracy is unknown—provide the ultimate uncertainty the slope is inevitably corrupted by natural variability of

the climate record established by MSU (Climate Chantfte climate system, which adds scatter to the data away

Science Program 2006). from any fitted line. A determination of the slope is also
The paradigm of climate monitoring using instrucorrupted by measurement uncertainty, which, too, adds

ments traceable to international measurement stand&@gfter to the data. In data analysis one computes the

(National Research Council, Committee on Earth Séincertainty in the estimate of the trend using the data’s

ence and Applications from Space 2007; Ohring 200®siduals. In deriving accuracy requirements for a climate

calls for a different analysis technique. After calibrd?€nchmark instrument, we estimate the uncertainty of a

tion, every measurement obtained is known to be ac#§t-to-be measured trend through conventional error

rate to within an uncertainty determined by the multipleropagation techniques. A deviatiom to the slope esti-

calibration pathways to the international system of unifate is caused by uncertainy; in the data:

on-board the spacecraft. No statement can nor need be N N

made r_egarding. whether the uncertqinty. of the measure- 5, — (Z(tﬂ’ _ 5)2)—1 Zédi (t; — 7). )

ments is changing or unchanging with time. Conserva- =

tive error analysis requires that the worst case scenario ] S

for error propagation be considered the relevant one: |ff€ Mean-square estimate of the uncertainty in the slope,

oy s
changing uncertainty leads to greater error in the resﬁﬁ‘?m) ), is

Jj=1

then changing uncertainty must be assumed; if unchang- N

ing uncertainty leads to greater error in the result, then <(5m)2> = (Z(tk — {)2)‘2 (3)
unchanging uncertainty must be assumed. Ordinary lin- k=1

ear regression is the obvious analysis method for climate N N

benchmark data. With a series of climate benchmarks x Y N (i —B)(t; — )(0d; 5d;).

one obtains a timeseries of data, with or without gaps in i=1 j=1

time, wherein each data point is accurate to within an up- . L . . . .
. ) : : pically in timeseries analysis, the uncertainty in the
certainty established by its traceable pathways to intern :
ata is understood to be completely uncorrelated, namely

tional standards. In the problem of detecting slowly evol%/-

) . . -that(dd; 6d;) = o26; ; wheres; ; is the Kronecker delta
ing trends in the climate system, one must also consider . I - o .
. . . nction. In climate signal detection this does not hold
the shorter timescale natural fluctuations of the climate . ; S - ;
. : ecause there is serial correlation in the timeseries (von
as an additional source of uncertainty. Thus, the uncer- .
torch and Zwiers 1999).

tainty associated with each point in a timeseries of data The fluctuations of the climate system are not white

is estimated as the standard deviation of the data points . . :
o . noise: they have associated length and time scales. A
from the best fit line, and both measurement uncertain

and natural variability contribute to that standard devi%l-. poral anomal_y of the cI_|mate system is bc_)und_ tolasta
inite amount of time, and if that amount of time is com-

tion. In cons_lderlng they contnbgqons thr_ough a prOp.erarabIe to or greater than the interval between data points
error analysis, one arrives at minimum signal detecti

times and requirements for instrument accuracy that %ﬁf%:fcfﬁg\llv;élf;mn the expectation valyéd; od;) takes

dictated by nature. In this paper, we present such an error
analysis. (6d; 8d;) = o2, Corr,_;(var) (4)

where Corr,, (var) is the correlation function of natural
variability at lagn dt in time ando?,, is the zero-lag

In order to arrive at an equation that can be used faariance associated with natural variability. (By natural
calculating a requirement for climate benchmark accwariability, we mean all the naturally occuring variations
racy we start with standard linear regression (Williamsternal to the climate thought to not be associated with
1959; von Storch and Zwiers 1999). Ultimately, a climathe response to a prescribed forcing.) A similar argument
benchmark timeseries will be used to determine whethelds for measurement uncertainty. It is very likely that

there are trends in the climate system. We give the so&r uncertainty in measurements of a climate benchmark

2. Derivation by Linear Regression



instrument lasts a finite amount of time as well, and theléwe assume a long timeseried (> 1), then the uncer-
fore errors at near-adjacent instances in time may be daiinty in the determination of the trend in the data reduces
related. This appears as an extra term in the expectation

Value<6di (Sd]) <(6m)2> ~ 12 (At)_3 (U\Q/arTVaY + 0'12ncas7'mcas) (10)

(0d; 6d;) = o2, Corr;_j(var) whereAt = N dt is the length of the timeseries. Eq. 10
+ 02 0as Corr;_j (meas). (5) is useful both for deriving science requirements for cli-
mate benchmark missions and for estimating the signal-
where o.,..s IS the measurement uncertainty antb-noise ratio in detecting climate signals.
Corr, (meas) is its time-lagged correlation function. Eq. 10 bears a simple interpretation. It is obvious that
We simplify the summations in Eq. 3 after insertinthe longer the timeseries, the easier it should be to distin-
Eg. 5, settingj = i + u, and summing oven. Except guish a trend from natural variability (and measurement
in the immediate vicinity of the first and last elements afncertainty). We call this the baseline effect. If we have
the timeseries the uncertainty in the estimate of the trejngdt two data separated ky¢ in time, the uncertainty in
becomes the trend determination is just the uncertainty in the mea-
N surements divided by the baseling. The mathematical
1 expression for this is thadm| ~ 0., /At, the errorin the
(6m)*) = (3 _(t —D?) [Gsar > Corry(var) determination of the slc?‘;e i|s invers/ely proportional to the

oo

k=1 - p=mee baseline of the timeseries. Advantage is gained, though,
402 Z Corr (meas)} ©) from the fact that a continuous timeseries offers the pos-
mCaSH:_OO " ’ sibility of averaging out some of the natural variability.

We call this the averaging effect. The advantage is pro-

The summations are exactly the normalized Fourier trai§rtional to the inverse square-root of the numbeimef
forms of the natural variability and of the measuremefigpendent measurements in the timeseries. Because fluc-
uncertainty time-|agged covariance functions at zero fr‘él.ations associated with natural Varlablllty in the climat
quency, and so they can be rewritten in terms of corref¥stem last about a correlation timg,., the number of

tion times for the natural variability,.. and for the mea- independent measurements in the timeseriestisry,;.
surement uncertainty,cas: Putting the baseline and averaging effects together, the er

ror in the slope becomeésm/| & oya, /At X \/Tyar /At N

e agreement with Eq. 10.
Tear = dt Z Corr,, (var) @)
S 3. Accuracy Requirements
Tmeas = dt Z Corr, (meas). (8) A series of climate benchmark missions will be used
p=—00 to detect trends in the climate system of any of a variety

of quantities. Before a climate benchmark is designed it

While infinite lags in these correlation functions are net customary to estimate the size of the trend;. We
practically realizable, we anticipate that the only signifjfine the factos to be the signal-to-noise ratio of de-

cant lags will be no greate_r than a few years for decadﬁ:létion,s — 1mest/|0m|, and the greater the greater the
scale trend detection. To illustrate why Eqgs. 7 and 8 g(Ehfijence with which one can declare a measured trend

ing of a serially uncorrelated random process. A seriallyg 515 the inverse of the fractional precision of the es-

uncorrelated random process has an autocorrelatian Qfate of a trend in a timeseries of data. We estimate the
at zero lag and an autocorrelation@btherwise.

: . ) ) IfitiS time it takes for a signal to emerge above natural variabil-
smoothed with a boxcar filter with widih, the autocorre- ity and measurement uncertainty with a signal-to-noise ra-

If';mon function becomes triangular. Itisat zero lag apd i0 5 (5 = Mess/|0m]):
linearly drops to0 at+7 and—T lag. The summation
of that correlation function given by Eq. 7, or the inte- _r12s® 1/3 211/3
R . . . . = | =35 OvarTvar (1 + .f ) (11)
gral of the autocorrelation function in lag time, is exactly ot
Tvar = 1. See Fig. 1 for an illustration.
We note for an unbroken but discretized timesetjes

that f? = (OtmeasTmeas) [ (Toar Tvar)- 12)
N
Z(t' — )2 = (dt)2(N® — N)/12. (9) From Eq. 11 itis clear that there is a lower bound on

the time it takes to detect a signal with a prescribed level

where the measurement uncertainty fagtos

=1
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FIG. 1. The time constant,,, of a smoothed random process. In panel A we show a timesdrgsially uncorre-
lated, normally distributed random data with standard @& 10 as points and the smoothed data after applying a
boxcar smoothing with width 100 as the solid curve. In panaldBshow the autocorrelations as a function of lag for
the data points as the dashed line and for the smoothed dtta sslid line. The area under the solid linexs100.

By definition, the area under the solid curve in panel B js. Theoretically, the constanmi,, of Eq. 7 is estimated to

be the width of the boxcar filter.

of confidence that is dictated by nature alone, and mearement uncertainty is decreased. The time constant as-
surement uncertainty amplifies that detection time ordpciated with measurement uncertaingy..s is difficult
in proportion to natural variability. The cube-root quarte quantify, so we use the “worst case scenario” concept
tity in square brackets in Eq. 11 gives the minimum tingescribed in the introduction to argue for its magnitude.
to detect a climate signal, as can be easily seen by $ptshort, a data set can be no more credible (or accurate)
ting the measurement uncertainty, and heficéo zero. than one can experimentally demonstrate. If an instru-
One consequence of a full consideration of the correlatiorent is designed to be traceable to international standards
time constant of natural variability is that detection tim@ollock et al. 2003) with uncertainty,..s, it is possible
remains unchanged after smoothing a timeseries of dalet the residual difference between truth and measure-
By smoothing data, one can reduce the departurgs)( ment can wander within the limits af..s during the
from a fitted line by the inverse square-root of the smootlifetime of the mission, and this would certainly aid the
ing interval, but the effective increase in the time constazause of detection by effectively decreasing the product
of the departures(., as defined by Eq. 7) from the fittedr2 .. Tmeas (S€€ Egs. 11 and 12). It is impossible, though,
line cancels the reduction in departures when consideriogexperimentally demonstrate that the residual diffeeenc
the two in combination through the produc}, 7. - between truth and measurement wanders on timescales

Secondly, from Eq. 11 it is also clear that measurghorter than the mission lifetime because no measurement
ment uncertainty amplifies the time to detection onfan be made with an uncertainty smaller thap.s. On
when considered in direct relation to natural variabilitpe other hand, if the residual difference between truth and
(through the factorf). If one requires thaf < 0.5, then calibrated measurement presists for the duration of a-satel
the time to detection is only increased £18% over what lite mission, then the uncertainty in the determation of the
nature allows. If one assumes that the correlation tiragtimated trend is greatly enhanced through the product
constant of the measurement uncertainty is the lifetimeaf.casTmeas. It is impossible to experimentally demon-
the climate benchmark instrument in question, then thtate that the residual difference between truth and mea-
accuracy requirement for the mission must be invers@lyrement remains constant over an instrument’s lifetime,
proportional to the square-root of the instrument lifetimut because the latter case is the worst case scenario which
The constant of proportionality,../7var is dictated by one cannot disprove experimentally, we argue thats
nature in the form of natural variability of the climate sygnust be the mission lifetime.
tem.

Thirdly, from Eq. 11 it is also clear that detection time
is decreased when the time constant associated with mea-



TAaBLE 1. Dependence of signal detection time on measurementtamgr(o,,..s) and instrument lifetimer(,c.s)-
We assume an interannual variability of 500-hPa air tenmpegafo,,, = 0.18 K with a correlation time constant of
Tvar = 1.54 yrs and a trend ofn, = 0.2 K decade ™.

Measurement uncertainty Detectiontime Detection time

(Umcas) (Tmcas =2 yrS) (Tmcas =6 yrS)
0.00K 33.4 yrs 33.4 yrs
0.02K 33.6 yrs 34.0 yrs
0.05K 34.5 yrs 36.5 yrs
0.10K 37.4 yrs 435 yrs
0.20K 46.0 yrs 60.1 yrs
0.50K 74.4 yrs 105.1 yrs
4. Example; Upper Air Temperature variability of the climate and the correlation timescale of

, that variability. Explicitly, those requirements are gov-
As an example, we assume that a satellite-borne ¢lijeq by Eq. 12 withf < 0.5.

mate benchmark instrument obtains global average tem-We have found that more precise trend estimates are

perature measurements centered at 500 hPa. We wish to : . I .
: .~ associated with shorter instrument lifetimes given the
assess the dependence of a global warming detection tihe

) N o same measurement uncertainty. This is best understood
given two possible instrument lifetimesg,(..s = 2,6 yrs) Y

; . by a simple example. If one desires a precise trend esti-

and an array of possible accuracy requirements for instrd- : . : )
. . . mate over a 20-yr timeseries of data, flying 10 satellites
ment uncertaintyd,,..s). We wish to test climate models . e . . . X
. . . with a 2-yr lifetime is preferred to flying 4 satellites with
by constraining the sensitivity of the climate to an uncer- o . .
g a 5-yr lifetime. The reason is that measurement uncertain-

tainty of 20%, so we set = 5. : . . o
. S ties associated with the satellites’ instruments can be as-
In Table 1 we gives = 5 detection times for a global

. ) sumed to be uncorrelated and thus average out with more
warming signal ofn = 0.2 K decade ™. We assume that d

2 S satellites. In the absence of natural variability, the unce
natural variability has ., = 0.18 K with time constant Y

tainty in trend determination from the 10-satellite time-
Tvar = 1.54 yrs for the global average temperature of th

; . - . Series will be a factor of- /10/4 less than the trend
500-hPa surface consistent with a realistic pre-industrig,, . ...ovo0 f0m the 4-sate||it</e timeseries

control run of UKMO HadCM3, taken from the CMIP3 Other h blishi

archive of climate model runs hosted by Program for Cli- . ther factors e’.“e_r when establis INg accuracy re-
mate Model Diagnosis and Intercomparison (PCMDI ‘uwements for a mission. One must decide acceptable
The minimum detection time is found to 8.4 yrs. A ignal detection times given the expense involved in de-

series of climate benchmark missions, each with a 2 PY_‘”g climate .ben.chma_rk satellite instruments. The
lifetime, clearly has shorter detection times than theeser inimum detection time dictated by nature must be con-

of missions with 6-yr lifetimes. If one chooses to follow idered. While shorter_ Iife_‘times (and hence more freque_nt
f = 0.5 rule for a science requirement, the detection tin ploymen_t) for sate_:lhte Instruments decrgas_es detectio
becomes6.0 yrs, just2.6 yrs over the minimum, the se-tmes, the increase in the number of satellllte instruments
fies of 2-yr missions must have an accuracy)of9 K, will dramatically inflate the expense of a signal detection

and the series of 6-yr missions must have an accuracyPG9"am- On the other hand, the_ shorter I|fet|m§ missions
0.046 K. (If natural variability is uncorrelated from yealgenerally require less accurate instruments which are ex-

{0 year fvar — 1 yr), then the minimum time to detectiorPeCted to be lower in cost per instrument than more accu-
would be29 0 yrs) ' rate (and longer lifetime) instruments.
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