High Accuracy IR Radiances for Weather & Climate
Part 2: Airborne validation of IASI and AIRS (JAIEx) &
the role for future benchmark satellites (CLARREO)

Henry E. Revercomb, David C. Tobin, Fred A. Best,
William L. Smith*, James G. Anderson,**
Robert O. Knuteson, Joe K. Taylor, Daniel D. LaPorte,
Steven Dutcher, Ray K. Garcia, Scott D. Ellington,
Mark W. Werner, Douglas P. Adler,
Nick N. Ciganovich, and Kenneth Vinson

University of Wisconsin-Madison,
Space Science and Engineering Center
* Hampton University
**Harvard University

EUMETSAT/AMS Satellite Conference
Amsterdam, The Netherlands, 24-28 September 2007
Perspective

• Era of High Spectral Resolution IR Sounding from space is here and impacting forecasts (AIRS, IASI, soon followed by CrIS & hopefully GIFTS)

• The High information content allows retrieval of trace gases, cloud and surface properties, in addition to temperature and water vapor profiles—stems from broad spectral coverage, low noise, and high absolute accuracy

• A new standard in absolute accuracy is being demonstrated with aircraft sensors referenced to NIST [Part 1]—a few 0.1 K 3-sigma is possible using the fundamental advantages of high resolution, good blackbodies, & atmospheric spectral calibration

• An exciting new Climate Mission has emerged
1. **Radiance Validation from high spectral resolution aircraft observations**: *a sound foundation for advanced retrieval capability*
 - Joint Airborne IASI Validation Experiment (JAIVEx) and aircraft instrument introduction
 - JAIVEx results for IASI on MetOp-A: 14 April - 4 May 2007

2. **The CLARREO benchmark Climate Mission**: A logical extension of demonstrated high accuracy, spectrally resolved radiance measurement capability—*
 presents a new retrieval challenge
 (To avoid biases*, the Climate change signal is the spatial and temporal average of nadir radiances—This signal needs interpretation in terms of climate forcing and response mechanisms)

averages of current retrievals would have large, poorly understood biases
1. Radiance Validation from high spectral resolution aircraft observations: a sound foundation for advanced retrieval capability
IASI on Metop
19 October 2006 launch
- full cross-track scan
- 2x2 12 km pixels
 sample 50x50 km

- Eumetsat Polar System Elements
- 14 years of operation
- >95% reliability on 5 years
Joint Airborne IASI Validation Experiment (JAIVEx)

- **What:** Metop and Aqua satellite under-flights for radiance and retrieval validation

- **Who:** NPOESS Airborne Sounder Testbed team (NAST-I/M & S-HIS on NASA WB57) & UK team (ARIES on Facility for Airborne Atmospheric Measurements BAe146-301)

- **When:** 14 April to 4 May 2007

- **Where:** Comparisons over the Gulf of Mexico and Oklahoma ARM site reached from Houston airbase
IASI T_b Spectrum:
Processed to represent S-HIS & NAST-I, AIRS & CrIS
Scanning HIS Aircraft Instrument:
Inter-comparisons connect high res. sensor calibrations
SSEC Spectrometer Ties to NIST
(See Best, et al., Part 1)

- Ground-based
 - AERI
- High-altitude Aircraft
 - S-HIS
- Spaceflight
 - GIFTS
 - NIST Waterbath Blackbody
 - NIST TXR

\[< 0.06 \text{ K error (293 to 333 K)} \]
\[< 0.06 \text{ K error (220 to 333 K)} \]
\[\varepsilon > 0.9994 \text{ (within estimated uncertainty)} \]
S-HIS Absolute Radiometric Uncertainty
for typical Earth scene spectrum

Formal 3-sigma absolute uncertainties, similar to that detailed for AERI in Best et al. CALCON 2003

- $T_{ABB} = 260$ K
- $T_{HBB} = 310$ K
- $\sigma T_{BB} = 0.10$ K
- $\sigma \epsilon_{BB} = 0.0010$
- $\sigma T_{refl} = 5$ K
- 10% nonlinearity
MetOp overpass of Oklahoma ARM CF
19 April 2007

IASI 900 cm⁻¹ BT (K)

Imager Data

ARM site

S-HIS FOVs

NAST-I FOVs

BT (K)

wavenumber (cm⁻¹)

IASI
NAST-I
S-HIS
Mean spectra

IASI minus NAST-I, IASI minus SHIS
(using double obs-calc method)

<table>
<thead>
<tr>
<th></th>
<th>IASI minus NAST-I</th>
<th>IASI minus SHIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAST-I</td>
<td>0.00 K</td>
<td>0.03 K</td>
</tr>
<tr>
<td>S-HIS</td>
<td>0.02 K</td>
<td>0.00 K</td>
</tr>
<tr>
<td></td>
<td>0.08 K</td>
<td>0.12 K</td>
</tr>
<tr>
<td></td>
<td>0.16 K</td>
<td>0.14 K</td>
</tr>
</tbody>
</table>
IASI Midwave Validation

Mean spectra

- **IASI**:
 - **NAST-I**: 0.04 K
 - **SHIS**: 0.03 K

- **Diff (K)**:
 - **IASI minus NAST-I**: 0.12 K
 - **IASI minus SHIS**: -0.19 K

IASI minus NAST-I, IASI minus SHIS

(Using double obs-calc method)

- **NAST-I**: 0.12 K
- **SHIS**: 0.20 K

Values:
- **0.04 K**
- **-0.08 K**
High Accuracy IR Radiances

Slide 14

IASI, NAST-I, SHIS

Mean spectra

IASI Shortwave Validation

BT (K)

Diff (K)

IASI minus NAST-I, IASI minus SHIS
(using double obs-calc method)

0.09 K
0.16 K
0.07 K
0.12 K
NAST-I
S-HIS
IASI, NASTI, and SHIS
Aircraft Radiance Validation Results Summary

• **Aircraft Validation** (of high resolution spectra): New, highly accurate capability proven 2002-2007

• **AIRS**: Differences from Scanning HIS generally <0.2 K with small standard deviations [Tobin et al., JGR, 2006]

• **TES**: Better than 0.5 K agreement in most regions (also characterized small, spectrally correlated noise from variable sample-position-errors) [Shephard et al., JGR, submitted April 2007]

• **IASI**: These preliminary results are comparable to AIRS validation results with higher spectral resolution & contiguous spectral coverage
AIRS/IASI Validation Conclusions

- Modern spaceborne, aircraft and ground-based spectrometers demonstrate great strides in calibration accuracy for weather & climate sensors.
- The technical heritage provides a strong foundation for new climate missions like CLARREO.
- But, currently planned measurements cannot perform the CLARREO mission—we need to
 1. remove the far IR blind spot,
 2. provide higher accuracy, proven in orbit; &
 3. couple these advances with unbiased spatial and temporal sampling.
IR spectral signature identifies change and conveys information about what has changed.
Climate Absolute Radiance and Refractivity Observatory (CLARREO): features Spectrally Resolved Radiance and GPS measurements

NASA is pursuing CLARREO as a promising new start, based on the NRC “Decadal Survey” Report—Also strongly recommended by ASIC3, edited by George Ohring
CLARREO Goal

• Establish highly accurate global benchmark measurements from satellite that detect and characterize climate change over decadal time scales
 – Determine annual regional changes on scales of order 15°x30° latitude/longitude
 – Determine seasonal changes (bi-monthly) on larger scales of order 50°x50°
1) **Maximize information content**, rather than monitoring total radiative energy budget (e.g. spectrally resolved nadir radiances covering large parts of the spectrum as a product, rather than total IR or Solar fluxes)

2) **Emphasize high absolute accuracy of measurements, proven on orbit** to minimize detection time and to relieve need for mission overlap (e.g. maintain SI measurements with on-orbit calibration validation)

3) **Deploy a new orbital configuration** optimized for global coverage and to minimize sampling bias [e.g. equally spaced, truly polar orbits (90º inclination) giving global coverage and equal time of day sampling every 2 months—explicit diurnal cycle measurement]
CLARREO General IR Science Drivers

• **Information Content**: Capture the spectral signatures of regional and seasonal climate change that can be associated with physical climate forcing and response mechanisms (to unequivocally detect change and refine climate models)

• **Absolute Accuracy**: <0.1 K 2-sigma brightness T for combined measurement and sampling uncertainty (each <0.1 K 3-sigma) for annual averages of 15°x30° lat/long regions (to achieve goal of resolving a climate change signal in the decadal time frame)

• **Calibration transfer to other spaceborne IR sensors**: Accuracy approaching the measurement accuracy of CLARREO using Simultaneous Nadir Overpasses (to enhance value of sounders for climate process studies—actually drives few requirements)
Basic IR Requirements (1)

- **Spectral Coverage**: 3-50 µm or 200-3000 cm\(^{-1}\) (includes Far IR to capture most of the information content and emitted energy)

- **Spectral Resolution**: \(~0.5\) cm\(^{-1}\) (1 cm max OPD) (to capture atmospheric stability, aid in achieving high radiometric accuracy, and allow accurate spectral calibration from atmospheric lines)

- **Spectral Sampling**: Nyquist sampled (to achieve standard spectral scale for multiple instruments)
Basic IR Requirements (2)

- **Spatial Footprint & Angular Sampling:** Order 100 km or less, nadir only (no strong sensitivity to footprint size, nadir only captures information content)
- **Spatial Coverage:** Complete global sampling (to not miss critical high latitude regions)
- **Orbits:** 3 90° inclination orbits spaced 60° apart (to minimize sampling biases that RSS with measurement uncertainty)
- **Temporal Resolution and Sampling:** < 15 sec resolution and < 60 sec intervals (adequate to reduce sampling errors and noise)
Basic IR Requirements (3)

• **Spectrometer Approach**: 2 Fourier Transform Spectrometers (dual FTS sensors to detect unexpected drifts and give full spectral coverage with noise performance needed for calibration transfer and on-orbit characterization testing)

• **Noise**: $\text{NEdT}(10 \text{ sec}) < 1.5 \text{ K}$ for climate record, $< 1.0 \text{ K}$ for cal transfer (not very demanding)

• **Detectors**: Pyroelectric for one FTS and cryogenic PV MCT and/or InSb for the other
Basic IR Requirements (4)

- **On-orbit characterization**: provide non-linearity and polarization test capability
 - Non-linearity from Out-of-band Harmonics and variable temperature blackbody
 - Polarization from multiple space view directions (design also minimizes effects of gold scene mirror induced polarization)
Basic IR Requirements (5)

• **Pre-launch Calibration/Validation:** Characterization against NIST primary infrared standards and evaluation of flight blackbodies with NIST facilities (recent “best practice”)

• **On-orbit Calibration:**
 Onboard warm blackbody reference (~300K), with phase change temperature calibration, plus space view, supplemented with characterization testing (to detect any slow changes)

• **Validation, On-orbit:**
 Variable-temperature standard blackbody, with on-orbit absolute T calibration and reflectivity measurement (to maintain SI measurements on orbit)
CLARREO Expected Calibration Uncertainty:
Based on GIFTS Spaceflight Calibration Blackbody Design

\[T_{\text{HBB}} = 300 \text{K}, \quad T_{\text{Structure}} = 285 \text{K}, \quad \delta T_{\text{Telescope}} = 0.02 \text{K}, \quad \varepsilon_{\text{Space}} = 0.00010 \]
UW-SSEC Developed GIFTS EDU Blackbody

Performance Significantly Exceeds Specifications

GIFTS Engineering Development Unit

<table>
<thead>
<tr>
<th>Key Parameter</th>
<th>Specification</th>
<th>As Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Range</td>
<td>233 to 313 K</td>
<td>233 to 313 K</td>
</tr>
<tr>
<td>Temperature Uncertainty</td>
<td>< 0.1 K (3 σ)</td>
<td>< 0.056 K</td>
</tr>
<tr>
<td>Blackbody Emissivity</td>
<td>> 0.996</td>
<td>> 0.999</td>
</tr>
<tr>
<td>Emissivity Uncertainty</td>
<td>< 0.002 (3 σ)</td>
<td>< 0.00072</td>
</tr>
<tr>
<td>Entrance Aperture</td>
<td>1.0 inch</td>
<td>1.0 inch</td>
</tr>
<tr>
<td>Mass (2 BBs + controller)</td>
<td>< 2.4 kg</td>
<td>2.1 kg</td>
</tr>
<tr>
<td>Power (average/max)</td>
<td>< 2.2/5.2 W</td>
<td>2.2/5.2 W</td>
</tr>
</tbody>
</table>

Blackbody Controller Card

Blackbody (2)
Separate Validation blackbody

• Provides capability to validate or correct SI measurement on-orbit
 – New On-orbit Temperature Calibration technique is based on fundamental phase change principles
 – Normal Reflectivity/Emissivity is measured on-orbit
On-orbit, full dynamic range T calibration

• New concept, uses phase change of three small material reservoirs integrally coupled into the GIFTS blackbody
• Detection of 3 phase changes used to calibrate the three unknowns in the thermistor resistance to T response function
• Proven accuracy is better than 10 mK
• Compatible with GIFTS blackbody flight design
3 Melt Points Calibrate Wide Dynamic Range
(using GIFTS BB Configuration)

Melt Signatures Provide Absolute Temperature Calibration Accuracies better than 10 mK for full atmospheric Temperature Range
Comparison to Traditional Approach

Traditional Laboratory Calibration Scheme

- Temperature Controlled Bath
- Heater
- Temperature Probe
- Melt Material

New Blackbody Calibration Scheme

- Blackbody Cavity
- Melt Materials (3 different)
- Temperature Sensors (3)
- Outer insulation not shown
CLARREO Summary

• An excellent, low cost, climate benchmark mission has been defined and has good technical readiness

• The mission is based on several new observing paradigms

• One key is an on-orbit calibration validation reference source, and an exciting new approach for on-orbit temperature calibration is now available for assuring the accuracy of that reference

• Corresponding new retrieval methods are under development to interpret the signatures of climate change (regional means of nadir radiances) in terms of climate forcing and response mechanisms. For climate, mean errors or biases must be minimized rather than standard deviations.