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Lognormal Full Field Theory

The starting point for lognormal based data assimilation is the
definition of the errors. This was first proposed in Cohn (1997)
where, due to the geometric behaviour of the lognormal
distribution the errors could not be defined as the difference
between two variables.

NOTE: There is no known distribution of the difference between
two lognormally distributed independent random variables.
However, it is known that the distribution of the differences is
NEITHER a Gaussian distribution nor a lognormal distribution.

Therefore we use the property that the ratio (and product) of
two lognormal independent random variables is also a
lognormally distributed random variable.
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The lognormal distributed observational errors from Cohn (1997)
are defined as

Yi
Epi = 1
o,l hl(x) ( )
wherei =1, ...,N,, y; are the observations, and h;(x) is the non-
linear observation operator.

The definition for lognormally distributed background errors

comes from Fletcher and Zupanski (2007) and they are defined by

xt

j
Epj = %o (2)

These are combined with the standard Gaussian error definition to
form the mixed lognormal-Gaussian error definition (Fletcher and
Zupanski, 2006b, 2007)
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FULL FIELD MIXED GAUSSIAN-LOGNORMAL 3D AND 4D VAR

The resulting 3DVAR and 4DVAR cost functions are

1 0, 1 0
T p—1 T p T p—1 T -0P
=—&.B —&'R 3
](x) 2 €p Ep T &, <1bq> + 2 €o o+ & <1oq> ( )
where
xt — x — h. . (x Fletcher and
g = ( v bp > and €, = <1 Yop | op (%) ) Zupanski
In xg — In xpq NYoq —In hyg(x) (2007)

and

1bp oqi

N, N,
1 _ 0, 1 _ 0,,;
J(xp) = EggbB 1£0b + Egb ( p) + Ez ggiRi 1€oi + 2 Egi <1om> (4)
i=1 i=1

where

_( *p(to) — xpp(to) _{( Ypi — hpi(Mi(x(2o)))
Fob = <ln x5(tp) — In qu(t0)> and £,; = <1n Yai — lnhq,-(M,-(x(to)))>

Fletcher (2010)
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Do we linearise the Bayesian problem or find the Bayesian problem
for the increment?

In Song et al. (2012) the first version of a lognormal distribution

incremental VAR is presented. The starting point in Song et al.

(2012) is to defined the relationship between the true state and the

background as

xt =xp0e®*  (5)

NOTE: Eqn (5) is equivalent to a log-linearisation of the full field
cost function. However, this raises the point that for both side to
be lognormal, the increment in (5) has to be

Therefore, the associated cost function for the increment should be
from a Gaussian distribution. Which is the median approach in
Song et al. (2012) and shows positive results against an assumed
Gaussian approach.

The problem here is that this increment is used to linearize the
background component, which means that the Bayesian problem is
GI not consistent for the Gaussian increment to make (5) lognormal.




Lognormal Incremental VAR

The starting point is to realize that unlike in the Gaussian framework
we can not apply an additive increment if we want to maintain a
lognormal framework, we have to define the relationship between
the true state and the background as

xt=x,0Ax (6)

This then allows the background component of the cost function to
be

1
Jp(AX) = E1n Ax"B71In Ax + In Ax"1 (7)

Therefore, (7) is consistent with a Bayesian problem for a
lognormally distributed increment, but is not a linearisation.
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Geometric Tangent Linear Modeling

We have to address how we are to linearise h(x; o Ax). Again as
with the background we require the observational component to
be as consistent with a lognormal distribution as possible.
Therefore, we can not simply use the standard tangent linear
approximation. To overcome this problem, in Fletcher and Jones
(2014), we define the Geometric Tangent Linear approximation as

|' /I\

flx + dx)

“(r,Ax)

fix)

/(@)
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Geometric Tangent Linear Modeling

This then allows us to be able to use standard derivative results for
a multiplicative increment. Which means that for lognormal 3DVAR
the observation operator can be approximated by

h(xp o AX) = h(xp) + %xb(Ax —-1) (7)

ox
And for 4ADVAR by
h;(M;(xp(to) o Ax(tg))) =~ h(M;(xp(tg)))
dh, OM, (8)
+ 9% Ox xp(to)(Ax(tg) — 1)

Fletcher and Jones (2014).
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Mixed Multiplicative-Additive Lognormal-Gaussian
Incremental VAR

As we do not live in a just Gaussian or lognormal world, we have to
combine the two approaches, as we have done for the full field
(Fletcher, 2010). We therefore define our incremental vector as

bep (t0)>
AX = 9
e (Aqu (tO) ( )
This then gives the following 4DVAR cost function (Fletcher and
Jones, 2014).
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1 0
JA,) ==AxT B AxT  +AxT, P
2 1bq

N, — T
i EZ ( Yopi ~ hopi(Mi(xb (to))) — HopiMiAxmx 1
2 im1 In Yoqi ~ In hoqi(Mi(xb (tO))) o W;ilHoqiMiAxmx l
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Example with the Lorenz 63 model

The Lorenz model is given by the following non-linear system of
three ordinary differential equation

x=aly—x)
Yy=pX—y—XZ
z=Xxy— Pz

The system is linearized and then descretized using the modified

The observations are calculated by adding, or multiplying random
perturbations from a Gaussian distribution, for the lognormal the
background state is multiplied by the exponential of the scaled
Gaussian increment

Euler scheme. The adjoint of this scheme is calculated analytically.
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The initial conditions for the true solution, the initial background

and the true increment at the initial time are

STATE TRUE BACKGROUND | INCREMENT
-5.4458 59 | 0.4542
Y -5.4841 -5.0 -.4841
22.5606 | 0.94 |
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Results for 20 cycles of 100ts with few accurate obs
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Results with same window lengths and same number of obs but

less accurate
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Results for same number of assimilation windows but with

accurate observations every other time step
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Results for same number of assimilation windows but with
accurate observations every other time step
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Comparison to a full Gaussian incremental system

These results are from Fletcher and Jones (2014) paper where here

we are presenting results from two of the experiments, the first to

highlight where the two systems are similar and the case where the
lognormal converges but the Gaussian does not.
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Conclusions
It is possible to define an incremental version of the lognormal
full field 3D and 4DVAR.
This is possible through relating a multiplicative increment to an
additive one from the gradient definition.
Have been able to test in a Lorenz 63 model with just inner
loops and no QC of observations and monitoring of the tangent
linear assumption
Tested with different number of observations with different
variances and with different assimilation window lengths
Next is to apply this theory in the WRF-GSI system which does
not need the adjoint of the WRF model
Have applied the full field mixed distribution formulation in a
temperature-mixing ratio microwave retrieval system and have
shown positive results compared to a Gaussian only version
(Kliewer et al., 2015).
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