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Data assimilation in one figure
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Figure: Data assimilation
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4D-Var formulation

I The model:

A := xk+1 −Mk,k+1(xk , θ) = 0, k = 0, . . . ,N − 1 , x0 = x0(θ) . (1)

I 4D-Var cost function:

J (x0) =
1
2
(
x0 − xb

0
)T

B−1
0 (x0 − xb

0) (2)

+
1
2

N∑
k=0

(Hk (xk )− yk )T R−1
k (Hk (xk )− yk ) ,

I Inverse problem:
xa

0 =arg min
x0∈Rn

J (x0)

subject to A
(3)
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Serial 4D-Var

The Lagrangian function associated with the inverse problem is

L =
1
2
(
x0 − xb

0
)T

B−1
0 (x0 − xb

0) (4)

+
1
2

N∑
k=0

(Hk (xk )− yk )T R−1
k (Hk (xk )− yk )

−
N−1∑
k=0

L M
λT

k+1︸︷︷︸ ·
Model Constraints︷ ︸︸ ︷

(xk+1 −Mk,k+1(xk , θ))− λT
0 · (x0 − x0 (θ))

I Requires several forward and adjoint computations which are inherently
serial.

I Can we reformulate the problem so that we end up solving small and
independent pieces of adjoint and forward models
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Parallel 4D-Var–Augmented Lagrangian I
I Divide the assimilation window to multiple sub-intervals.
I Propagate the background state to get an initial guess at the beginning of

each of these subintervals.
I The augmented Lagrangian associated with 4D-Var cost function and

model constraints is given by

L (X) =
1
2

(
x̃0 − xb

0

)T
B−1

0

(
x̃0 − xb

0

)
+

1
2

N∑
k=1

(
H
(
x̃k
)
− yk

)T R−1
k

(
H
(
x̃k
)
− yk

)
−

N−1∑
k=0

λT
k+1
(
x̃k+1 −Mk,k+1

(
x̃k
))

+
µ

2

N−1∑
k=0

(
x̃k+1 −Mk,k+1

(
x̃k
))T P−1

k

(
x̃k+1 −Mk,k+1

(
x̃k
))

︸ ︷︷ ︸
Penalty term

,

X := [x̃0, · · · , x̃N ]
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Parallel 4D-Var–Augmented Lagrangian II

I Gradient computation:

∇x̃0
L = B−1

0

(
x̃0 − xb

0
)
− MTP−1

1

(
x̃1 −M

(
x̃0
))

, (5)

∇x̃k
L = HkR−1

k

(
H
(
x̃k
)
− yk

)
+ MTλk+1 (6)

− µMTP−1
k

(
x̃k+1 −M

(
x̃k
))

+µP−1
k

(
x̃k −M

(
x̃k−1

))
− λk , k = 1, . . . ,N − 1,

∇x̃N
L = HNR−1

N

(
H
(
x̃N
)
− yN

)
+ µP−1

N

(
x̃N −M

(
x̃N−1

))
. (7)

I The gradients can be evaluated in parallel!!!
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Numerical Results - Lorenz 96 Model I

I Lorenz-96 model is given by:

dxi

dt
= xi−1 (xi+1 − xi−2)− xi + F , (8)

where x = (x1, x2, . . . , x40)T ∈ R40 is the state vector, and F = 8 is the
forcing term.

I Synthetic observations with background errors ∼ 8% and observation
errors ∼ 5% are generated.

I Observations: Equally spaced in the temporal direction.
I Weak scaling – each processor approximately does the same amount of

work.
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Numerical Results - Lorenz 96 Model II
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Figure: Scalability of cost function evaluations.
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Numerical Results - Lorenz 96 Model III
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Figure: Scalability of gradient evaluations.
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Numerical Results - Lorenz 96 Model IV
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Figure: RMSE Comparisons between serial and 4D-var for Lorenz model.
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Numerical Results - Lorenz 96 Model V
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Figure: Errors at different stages: Lorenz model.
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Numerical Results - Lorenz 96 Model VI
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Figure: Timing Comparisons between serial and 4D-Var for Lorenz model.
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A-posteriori error estimates for 4D-Var

I The perfect model:

A := xk+1 −Mk,k+1(xk , θ) = 0, k = 0, . . . ,N − 1 , x0 = x0(θ) . (9)

I Ideal 4D-Var cost function:

J (x0) =
1
2
(
x0 − xb

0
)T

B−1
0 (x0 − xb

0) (10)

+
1
2

N∑
k=0

(
Hk (xk )− ytrue

k
)T R−1

k

(
Hk (xk )− ytrue

k
)
,

I Inverse problem:
xa

0 =arg min
x0∈Rn

J (x0)

subject to A
(11)
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‘Imperfect’ 4D-Var

I Imperfect cost function:

Ĵ (x0) =
1
2
(
x0 − xb

0
)T

B−1
0 (x0 − xb

0) (12)

+
1
2

N∑
k=0

(
Hk (x̂k )− ytrue

k −∆yk
)T R−1

k

(
Hk (x̂k )− ytrue

k −∆yk
)
.

I The perturbed strongly constrained 4D-Var analysis problem solved in
reality is

x̂a
0 = arg min

x0∈Rn
Ĵ (x0) subject to x̂k+1 −Mk,k+1(x̂k , θ)−∆x̂k+1(x̂k , θ) .

(13)
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Ideal super-Lagrangian
I QoI is E

(
xa

0

)
I We are interested in estimating E

(
x̂a

0

)
− E

(
xa

0

)
.

I Super-Lagrangian with Ideal KKT:

LE = E(x0)−
N−1∑
k=0

νT
k+1 ·

‘Ideal’ Forward Model︷ ︸︸ ︷
(xk+1 −Mk,k+1(xk )) (14)

−µT
N ·
(
λN − HT

NR−1
N

(
HN(xN)− ytrue

N
))

−
N−1∑
k=0

µT
k ·

‘Ideal’ Adjoint model︷ ︸︸ ︷(
λk −MT

k,k+1 λk+1 − HT
k R−1

k

(
Hk (xk )− ytrue

k
))

−ζT B−1
0 (x0 − xb

0)− ζTλ0︸ ︷︷ ︸
‘Ideal’ Optimality

.
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Perturbed super-Lagrangian

L̂E = E(x̂0)−
N−1∑
k=0

νT
k+1 ·

Perturbed Forward Model︷ ︸︸ ︷(
x̂k+1 −Mk,k+1(x̂k )−∆x̂k+1

)
(15)

−µT
N ·
(
λ̂N − HT

NR−1
N

(
HN(x̂N)− ytrue

N
)

+ HT
NR−1

N ∆yN

)

−
N−1∑
k=0

µT
k ·

Perturbed Adjoint Model︷ ︸︸ ︷(
λ̂k −

(
MT

k,k+1 +
(
∆x̂k+1

)T
x̂k

)
λ̂k+1

)

−
N−1∑
k=0

µT
k ·

Perturbed Adjoint model︷ ︸︸ ︷(
HT

k R−1
k ∆yk − HT

k R−1
k

(
Hk (x̂k )− ytrue

k
))

−ζT ·

(
B−1

0 (x0 − xb
0) + λ̂0 +

N−1∑
k=0

(
∆x̂k+1

)T
θ
λ̂k+1

)
︸ ︷︷ ︸

Perturbed Optimality

.
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Error estimate

I At (xa
0,x, λ, µ, ν, ζ), super-Lagrangian is stationary. Hence we have:

∆LE = LE(x̂a
0, x̂, λ̂, µ, ν, ζ)− LE(xa

0,x, λ, µ, ν, ζ) ≈ 0. (16)

I The estimate can be obtained by subtracting the ideal super-Lagrangian
from the perturbed one:

0 ≈ ∆E −
N−1∑
k=0

νT
k+1 ·

(
−∆x̂k+1

)
− µT

N ·
(

HT
NR−1

N ∆yN

)

−
N−1∑
k=0

µT
k ·
(

HT
k R−1

k ∆yk −
(
∆x̂k+1

)T
x̂k
λ̂k+1

)

−ζT ·

(
N−1∑
k=0

(
∆x̂k+1

)T
x0
λ̂k+1

)
.
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Evaluating the super-Lagrange parameters

I ζ can be obtained by solving the linear system:

(∇2
x0,x0

j)(xa
0) · ζ = ET

x0
. (17)

I µk is obtained by the TLM initialized with ζ.

I νk requires a solution of the second order adjoint system.
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Experimental Settings

I Experiments using shallow water model on the sphere.

I Hourly observation for 9 (24) hours.

I Synthetic observations with mean = 0 and std. deviation = 2% for Height
and 10% for velocity.

I For model errors, observations are collected on a fine grid. But the
optimization is performed on a coarse grid.

I Experiments performed with dense and sparse observation grids.
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Figure: Selected coarse grid points and sensor locations
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Deterministic validation

∆Eactual = E(x̂a
0)− E(xactual

0 )

∆Eactual ∆Eest
Data Errors 54.70 57.26
Model Errors (Discrete) 1.9278 2.9683

Table: The comparison between actual error and the a posteriori error estimates for the
dense observation network.

∆Eactual ∆Eest Contributions (Data Errors) Contributions (Model Errors)
284.321 581.883 624.772 - 42.889

Table: Comparison between actual errors in the QoI and the a-posteriori error estimates
for the shallow water model for the sparse observation network.
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Data error contributions
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Figure: Sparse observation network scenario: Data errors and its impact on the Height
component.
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Model error contributions
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Figure: Sparse observation network scenario :Model errors and its impact on the Height
component.
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Conclusions

I Augmented Lagrangian framework is promising and can give real
speedups

I A-posteriori error estimates can prove useful in optimal sensor locations,
mesh refinement.

I Has to be tested on WRF.
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