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Notation

" Attractor
x|
o —x

- = =% (D)

# Nonlinear trajectory: X;(t) = M(Xy(0),t,0)



Use of linear modelsin NWP

- .

# Variational data assimilation (4D-VAR)
# Ensemble prediction (Singular vectors)
# Diagnostics (Adjoint based observation impact)
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Use of linear modelsin NWP

-

# Variational data assimilation (4D-VAR)
# Ensemble prediction (Singular vectors)
# Diagnostics (Adjoint based observation impact)

Main limitation
# Linear models are only useful in the “short” range

(Research question)

# Can we exactly simulate the nonlinear growth of
perturbations with the linear model?

o
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Nonlinear differential equations

fConsider the differential equation T

X =¢(X,X) +b(X) + ¢,
where ¢ Is linear in both arguments, b is linear and c Is a
(time dependent) forcing.

In NWP ¢(X, X) Is typically a result of the advection part of
the total derivative, e.qg.



Nonlinear differential equations

o .

Consider the differential equation

X = ¢(X,X) + b(X) + ¢,

where ¢ Is linear in both arguments, b is linear and c is a
(time dependent) forcing.

# |[nitial condition 1 (background): X;(0)

# [nitial condition 2 (analysis): X, (0)

o Corresponding trajectories X;(t) and X, (?)

® Define X, (t) = Xp(t) + x4(t)

o -



Derivation of the Opt. lin. trajectory

-

The analysis trajectory satisfies

=

X, = ¢(Xg, X)) +b(X,) + ¢
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Derivation of the Opt. lin. trajectory

-

The analysis trajectory satisfies

=

Xo = q(Xq, Xq) +0(Xq) + ¢

Substitution of X, (1) = Xp(t) + x4(t) gives

Xb +Xo = q(Xp + Xq, Xp + Xq) + b(Xp + Xq) + C
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Derivation of the Opt. lin. trajectory

-

The analysis trajectory satisfies

=

Xo = q(Xq, Xq) +0(Xq) + ¢
Substitution of X, (1) = Xp(t) + x4(t) gives

Xb +Xo = q(Xp + Xq, Xp + Xq) + b(Xp + Xq) + C
Using bilinearity of ¢ and linearity of b and

Xy = q(Xp, Xp) +b(Xp) +

to eliminate X,
gives the exact time evolution for perturbations

L Xq = ¢(Xp, %) + ¢(Xa, Xp) + b(x4) + q(Xa,Xq) J




Derivation of the Opt. lin. trajectory
. o

rom the previous slide

Xq = g(Xba Xq) + q(Xa, Xp) + b(XaZ +q(Xa, Xa) (1)
DFf(X)xa

Retaining only terms linear in x, gives the familiar tangent
linear (TL) model

x, = Df(X})%, 2)

Here Df(X,) is the Jacobian evaluated along the trajectory
Xp(1).

o -



Thekey point of this presentation

fFrom the previous slide T
Xq = g(Xba Xq) + q(Xa, Xp) + b(XaZ +q(Xa, Xa) (3)
DFf(X)xa

The key observation is that this can be written as

x, = Df(X} 4+ x4/2)Xq

l.e. we obtain the exact time evolution of perturbations in
the TL-model if we integrate around the trajectory X; + x,/2
Instead of X,.
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Thekey point of this presentation

fFrom the previous slide T
Xq = g(Xba Xa) + Q(Xaa Xb) =+ b(XaZ "‘Q(Xaa Xa) (4)
DFf(X)xa

The key observation is that this can be written as

x, = Df(X} 4+ x4/2)Xq

l.e. we obtain the exact time evolution of perturbations in
the TL-model if we integrate around the trajectory X; + x,/2
Instead of X;. Inintegral form

Xa(t) — MXb—i—Xa/Q(tv O>XCL(O)

o -




Opt. lin. trajectoriesin the QG model
- o

Quasi geostrophic model (Marshall and Molteni, 1993)
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Therdinearization method

-

Exact time evolution of perturbations

Xa = MX5+XG/2X6L (O)

For a given estimate of the increment trajectory x*~! the
TL-model can be used in the following iterative procedure

}A{Z p— MXb_i_j\(]é—l/zXa(O)

l.e. we consider the complete trajectory x%~1(¢) as the
independent variable X% = Tx, (xF1).

o -



Prediction QG model T21L 3 (2 days)

1 (x4(t) = 0)

Inear iteration
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Prediction QG model T21L 3 (2 days)

onlinear Tangent linear iteration
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Prediction QG model T21L 3 (2 days)

Nonlinear Tangent linear iteration
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Prediction QG model T21L 3 (2 days)

Nonlinear
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Prediction QG model T21L 3 (2 days)

o
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Applications
-

# Forecast sensitivity
# Variational data assimilation
# Adjoint based observation impact
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Forecast sensitivity

" Attractor
L | —X,0 )
o —x
X0

cert XKD
X, (T)

# Nonlinear trajectories: X (t),X,(t)
#® Measurement at time 7. X, (7"
# |[nnovation at time T x,(7T) = X, (T) — Xu(T)
L.. Estimate attime ¢t =0 : x,(0) = M;é (T,0)x,(T) J
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Forecast sensitivity (L 96 model, 2days)
B o W o
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» lteratively solve %" () = 1\/[;{ L1 jpXa

# NL model can not be used to update X;(¢) (4D-VAR).

o -
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Concluding remarks

=

The nonlinear time evolution of perturbations can be
described by linear models

In QG model opt. lin. traj. can be used for 200 days

The incremental 4D-VAR algorithm can be revised s.t.
o Computational cheaper

s Allows merging of inner and outer loops

s Easier to analyse by linear algebra methods

» More suitable for high resolutions/long windows

Higher order nonlinearities can be taken into account by
linearizing around an ensemble of trajectories

Exact adjoint based observation impact (including effect
of multiple outer loops) J
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Concluding remarks

=

The nonlinear time evolution of perturbations can be
described by linear models

In QG model opt. lin. traj. can be used for 200 days

The incremental 4D-VAR algorithm can be revised s.t.
o Computational cheaper

s Allows merging of inner and outer loops

s Easier to analyse by linear algebra methods

» More suitable for high resolutions/long windows

Higher order nonlinearities can be taken into account by
linearizing around an ensemble of trajectories

Exact adjoint based observation impact (including effect
of multiple outer loops) J
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An alternative 4D-VAR formulation

- .

1
Ky = (H§R—1HX + B—l) HZR !
4D-VAR

L owith y" =Y - H(Xg_l)

~ k L k—
Xg = KXS;—ly

Alternative 4D-VAR

}A(]; — KXb+>2§_1/2y with vy =Y — H(X}p)

Both methods account for nonlinearity by modifying the
linearization trajectory but
# Possibility to update trajectory in inner loops

L.o Proposed method does not modify the innovation vectorJ

# More suitable for high resolution/long window DA?
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Merging inner/outer loops QG model
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Beyond advection
E

or bilinear models

x, = Df(X; + 4x,)%,

Higher order nonlinearities

X = 50+ 51(X) + 59(X, X) 4+ 53(X, X, X) + ...
can be taken into account by

J
%a = » a;DE(X} + Bjx4)Xq
j=1

Using Gaussian quadrature we can take into account all
- terms up to order s,;. The TL-model is integrated around
an ensemble of trajectories simultaneously.
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Ensemble of trajectoriesin L96

-

Similarity index Lorenz 96 with higher order nonlinearities
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Adjoint observation impact

=
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