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Filtering problem

Framework

Assimilation (filtering) for non linear and high-dimensional systems.

State-space model:

e Continuous stochastic dynamical model

dx(t) = f(x(£))dt + odB(?)

e Discrete-time observations (images)

y(te) = g(x(tk)) + 1,
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Filtering problem

Filtering aims at estimating p(x¢, |y+,:¢,) for all ¢.

Sequential Monte Carlo techniques:

e Ensemble Kalman filter:
R N
p(th |yt1:tk) = N(Ntm Etk) = Ei:l 6x§i) (th)
k

e Particle filter: o
R N ;
p(th |yt1¢tk) = Zi:l wtz 5x§i) (th)
k
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Both are based on prediction and correction:
e EnKF: ensemble prediction (model), Kalman correction (Gaussian);

e Particle filter: importance sampling, particles weights correction.



Particle filter

e Prediction : importance sampling
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e Correction : computation of importance weights
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e Resampling
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Particle filter

Advantages of particle filter:
e no Gaussian or linear hypotheses;

o theoretical convergence towards optimal Bayesian filter.

But particle filter in its simplest form:
e uses the transition p(xy,|x¢, ,) as importance distribution

e = not efficient for high-dimensional problems.
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Particle filter

Advantages of particle filter:
e no Gaussian or linear hypotheses;

o theoretical convergence towards optimal Bayesian filter.

But particle filter in its simplest form:
e uses the transition p(xy,|x¢, ,) as importance distribution

e = not efficient for high-dimensional problems.

= Weighted EnKF: tries to combine the efficiency of EnKF methods with
the good properties of particle filters.
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Weighted ensemble Kalman filter

o Idea of WENKF: the importance distribution of the particle filter is
given by the EnKF.

W(th |Xtoitk71 ) yt1:tk) = W(th ‘th71 3 ytk) = N(Mtkv Ztk)



Weighted ensemble Kalman filter

o Idea of WENKF: the importance distribution of the particle filter is
given by the EnKF.

W(th |Xtoitk71 ) yt1:tk) = W(th ‘th,1 3 ytk) = N(Mtkv Ztk)

e One WENKEF iteration, from p(x¢, ,|yt,:t,_,) to P(x¢, |[yt,:2,.):

e Start with particles xg )

i_’{ and weights wt(;)_l fore=1,...,N
(). f

tg

),a

Prediction step of EnKF = x

o Analysis step of EnKF = xti
)

Computation of weights wtz
Resampling
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Weighted ensemble Kalman filter

= The WENnKF can be seen as:

e a particle filter with EnKF as importance distribution: guides particles
towards observation, contrary to standard particle filters;

e an EnKF with ensemble weights wﬁz) for i =1: N: relaxation of the
Gaussian assumption.



Weighted ensemble Kalman filter

= The WENnKF can be seen as:

e a particle filter with EnKF as importance distribution: guides particles
towards observation, contrary to standard particle filters;

e an EnKF with ensemble weights wﬁz) for i =1: N: relaxation of the
Gaussian assumption.

Data assimilation with the weighted ensemble Kalman filter. Tellus Series
A: Dynamical Meteorology and Oceanography, 2010 (N. Papadakis, E. Mémin, A.
Cuzol, N. Gengembre)



Weighted ensemble Kalman filter

e Theoretical result: EnKF and particle filter do not have the same limit
distribution (LeGland et al 2011).

e This can be observed in small dimension for a non linear model:
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Weighted ensemble Kalman filter

High dimension: harder to highlight a difference in limit distributions.
But WENKF seems to converge faster than EnKF:

—Enkf —Enkf

Error

6 20 40 60 80 100 20 40 60 80 100
Time Time Time

or =0.1, 0 =0.01 or =0.1,0¢ = 0.05 or =010 =0.1



Practical application

© Practical application



Practical application

SST image assimilation

Practical application: assimilation of sea surface temperature images (El
Nifio phenomenon, January 2008).
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Practical application: assimilation of sea surface temperature images (El
Nifio phenomenon, January 2008).
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Practical application

SST image assimilation - Model

e 2D velocity-vorticity dynamical model:

d§; = —V§, - widt + vAE,dt + odB;
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SST image assimilation - Model

e 2D velocity-vorticity dynamical model:

d§; = —V§, - widt + vAE,dt + odB;

e Model perturbations:
Gaussian random fields with covariance X = oo
[|xi—x;]|? ))
Py

T (exponential

covariance 3(x;,X;) = nexp(—



Practical application

SST image assimilation - Model

e Observation models:

e Linear (external estimator £) :
&, =& Ve,
e Non linear (directly from image data I) :

I(z,ty) = I(z + d(z), tps1) + ¢, (2)



Practical application

SST image assimilation - Details

ETKF is used as proposal step

Non linear observation: Hxj, replaced by H(xy)
48 images 256*256 (spatial resolution: 10km)

Temporal resolution: one day

Missing data = high observation noise



Practical application

SST image assimilation - Details

ETKF is used as proposal step
Non linear observation: Hxj, replaced by H(xy)
48 images 256*256 (spatial resolution: 10km)

Temporal resolution: one day

Missing data = high observation noise

Analysis of SST images by weighted ensemble transform Kalman filter.
IGARSS'11(S.Beyou, S. Gorthi, E. Mémin)

Weighted ensemble transform Kalman filter for image assimilation. /n
preparation (S.Beyou, A. Cuzol, S. Gorthi, E. Mémin)



Practical application

SST image assimilation - Results

SST and velocity - Day 1 Day 10 Day 39 Day 48

Vorticity and velocity - Day 1 Day 10
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Trajectories smoothing

Filtering discontinuities

WENKF (as EnKF) leads to temporal discontinuities (correction at
observation times only):

%10




Filtering discontinuities

[llustration for a given time interval between two observations:



Trajectories smoothing

Sequential trajectories smoothing

¢ Using conditional simulation of diffusions (Delyon et al 2006), one can
sample new trajectories between ¢, and ¢, once y;, is known.

= For each pair {xgi)il,xgi)}, i=1,...,N, compute:

p(xt|x§i)7l,xgi)) for all t € [tg_1,tx]



Sequential trajectories smoothing

¢ Using conditional simulation of diffusions (Delyon et al 2006), one can
sample new trajectories between ¢, and ¢, once y;, is known.

= For each pair {xgi)il,xgi)}, i=1,...,N, compute:
@ xDy forall te [ty t
p(xelxy, %) fora € [tp—1,tk)
e The smoothing distribution writes:

P(Xt|yty:t,) Zw !th 1,xgk)) for all t € [tg—1,tx]

e Based on WENKEF trajectories weights;
e No linearization or Gaussian assumption;
e Respects the state model.



Sequential trajectories smoothing

¢ Using conditional simulation of diffusions (Delyon et al 2006), one can
sample new trajectories between ¢, and ¢, once y;, is known.

= For each pair {xgi)il,xgi)}, i=1,...,N, compute:

p(xt|x§i)7l,xgi)) for all t € [tg_1,tx]

e The smoothing distribution writes:
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e Based on WENKEF trajectories weights;
e No linearization or Gaussian assumption;
e Respects the state model.

Monte Carlo fixed lag smoothing in state-space models. To be submitted
(A. Cuzol, E. Mémin)
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Sequential trajectories smoothing

[llustration for a given time interval between two observations:
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