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Introduction

4D-Var problem: Formulation

→ Large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

where:

x ∈ Rn is the control variable

The observations yj and the background xb are noisy

Mj are model operators

Hj are observation operators

B is the covariance background error matrix

Rj are covariance observation error matrices
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Introduction

4D-Var problem: Formulation

→ Large-scale nonlinear weighted least-squares problem:

min
x∈Rn

f(x) =
1

2
||x− xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

Typically solved by a standard Gauss-Newton method known as Incremental
4D-Var in data assimilation community

1 Solve linearized subproblem at iteration k

min
δx∈Rn

J(δx) =
1

2
‖δx− [xb − x]‖2B−1 +

1

2
‖Hδx− d‖2R−1

Sequence of quadratic minimization problems

2 Perform update x(k+1)(t0) = x(k)(t0) + δx(k)
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Introduction

4D-Var problem: Solution

From optimality condition

(B−1 +HTR−1H)δx = B−1(xb − x) +HTR−1d

The aim is to solve sequences of this linear system.

Solution algorithms: Krylov subspace methods

Exact solution writes:

xb − x0 +
(
B−1 +HTR−1H

)−1
HTR−1 (d−H(xb − x0))
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Introduction

Krylov subspace methods

(B−1 +HTR−1H)︸ ︷︷ ︸
A

δx = B−1(xb − x) +HTR−1d︸ ︷︷ ︸
b

Krylov subspace methods searchs for an approximate solution δxl from a
subspace δx0 +Kl(A, r0) where

Kl(A, r0) = span
{
r0, Ar0, A

2r0, ..., A
l−1r0

}
, r0 = b−Aδx0

Krylov subspace methods impose the Petrov-Galerkin condition

rk⊥Ll(A, r0).

A is symmetric and positive definite

Ll(A, r0) = Kl(A, r0) �Lanczos, Conjugate Gradient (CG)
�FOM (unsymmetric case for further reference)
�minimizes ‖rk‖A−1

Ll(A, r0) = AKl(A, r0) �MINRES
�minimizes ‖rk‖2
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Introduction

Krylov subspace methods

Which one to use when A is symmetric and positive definite?

Less computational cost and memory

Efficient preconditioning

Efficient re-orthogonalization

Convergence behaviour

...

We focus on Lanczos and CG

They are implemented in the realistic applications.

It is possible to use preconditioners. It is possible to avoid B1/2.

It is possible to use re-orthogonalization.

CG is globally convergent when using the Steihaug-Toint truncated
conjugate gradient trust region method
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Introduction

Preconditioned Lanczos algorithm (F 1/2 is not required!)

For i = 1, 2, ..., l

1 wi = (B−1 +HTR−1H)zi � Construction of the Krylov sequence

2 wi = wi − βivi−1

3 αi = 〈wi, zi〉 �Orthogonalization

4 wi+1 = wi − αivi
5 zi+1 = Fwi+1 �Apply preconditioner

6 βi+1 = 〈zi+1, wi+1〉1/2

7 vi+1 = wi+1/βi+1 �Normalization

8 zi+1 = zi+1/βi+1

9 V = [V, vi+1] �Orthonormal basis for Krylov subspace

10 Ti,i = αi; Ti+1,i = Ti,i+1 = βi+1 �Generate the tridiagonal matrix

Solution

1 yl = T−1
l β0e1 �Impose the condition rk⊥Kl(A, r0)

2 δxl = FVlyl �Find the approximate solution
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Introduction

Preconditioned CG algorithm (F 1/2 is not required!)

Initialization

r0 = Aδx0 − b, z0 = Fr0, p0 = z0

For i = 0, 1, ...

1 qi = (B−1 +HTR−1H)pi

2 αi =< ri, zi > / < qi, pi > �Compute the step-length

3 δxi+1 = δxi + αipi �Update the iterate

4 ri+1 = ri − αiqi �Update the residual

5 ri+1 = ri+1 −RZT ri+1 �Re-orthogonalization

6 zi+1 = Fri+1 �Update the preconditioned residual

7 βi =< ri+1, zi+1 > / < ri, zi > �Ensure A-conjugate directions

8 R = [R, r/βi] �Re-orthogonalization

9 Z = [Z, z/βi] �Re-orthogonalization

10 pi+1 = zi+1 + βipi �Update the descent direction
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Dual Approach

Alternative Methods: Dual Approaches

Can we reduce the computational cost?

Dual Approaches!

While using the dual approaches is it possible to

keep the convergence behaviour?

apply efficient preconditioners?

apply re-orthogonalization?
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Dual Approach

Dual Approach

Exact solution writes

xb − x+
(
B−1 +HTR−1H

)−1
HTR−1 (d−H(xb − x))︸ ︷︷ ︸

δv∈Rn,n≈107

or equivalently using the Sherman-Morrison-Woodbury
formula or duality theory

xb − x+BHT (R−1HBHT + I)−1R−1(d−H(xb − x))︸ ︷︷ ︸
λ∈Rm,m≈105

Performing inner minimization in Rm hopefully reduces
memory and computational cost !
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Dual Approach

Dual approach

Minimization in dual space

1 Iteratively solve

(Im +R−1HBHT )λ = R−1(d−H(xb − x))

2 Set δx = xb − x+BHTλ

PSAS algorithm (Courtier 1997): PCG on this linear system
with R inner product

RPCG algorithm (Gratton and Tschimanga 2009): PCG on
this linear system with HBHT inner product

RLanczos algorithm: Lanczos on this linear system with
HBHT inner product
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Dual Approach

Dual Approach: RPCG and PSAS algorithm

Initialization

λ0 = 0, r̂0 = R−1(d−H(xb − x)),
ẑ0 = Gr̂0, p̂1 = ẑ0, k = 1

Loop on k

1 q̂i = Âp̂i

2 αi =< r̂i−1, ẑi−1 >M / < q̂i, p̂i >M

3 λi = λi−1 + αip̂i

4 r̂i = r̂i−1 − αiq̂i
5 βi =< r̂i−1, ẑi−1 >M / <
r̂i−2, ẑi−2 >M

6 ẑi = Gr̂i

7 p̂i = ẑi−1 + βip̂i−1

Â = R−1HBHT + Im

G is the preconditioner.

M is the inner-product.

PSAS Algorithm: M = R cheap
matvec

RPCG Algorithm: M = HBHT

expensive matvec (model integration
is required)

G should be symmetric w.r.t. to M

Gratton, Gurol, Toint The 9th Adjoint Workshop



Dual Approach

Dual Approach: Precond. RLanczos algorithm and PSAS

For i = 1, 2, ..., l

1 ŵi = (I +R−1HBHT )zi

2 ŵi = ŵi − βiv̂i−1

3 αi = 〈ŵi, zi〉M
4 ŵi+1 = ŵi − αiv̂i
5 ẑi+1 = Gŵi+1

6 βi+1 = 〈ẑi+1, ŵi+1〉1/2M

7 v̂i+1 = ŵi+1/βi+1

8 ẑi+1 = ẑi+1/βi+1

9 V̂ = [V̂ , v̂i+1]

10 Ti,i = αi; Ti+1,i = Ti,i+1 = βi+1

Solution

1 yl = T−1
l β0e1

2 δxl = BHTVlyl

M = HBHT

G is the preconditioner

When M = R, the iterates are
mathematically equivalent to that of
PSAS
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Dual Approach

Dual approach: Primal equivalent algorithms

Assume that
r0 ∈ range(HT )

FHT = BHTG

where F is the preconditioner in primal space and G is the
preconditioner in dual space.

Rlanczos, RPCG, CONGRAD, PCG and Lanczos method in
the primal space are mathematically equivalent to each
other.

MINRES is not equivalent, it minimizes ‖rk‖2!
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Dual Approach

Results for ROMS

Observations: SST (Sea Surface Temperature) and SSH(Sea Surface Height)
observations from satellites. Sub-surface hydrographic observations from floats.

Number of observations (m): 105

Number of state variables (n): 106 for strong constraint and 107 for weak
constraint.

Computation: 64 CPUs
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Dual Approach

Results for 3D-VAR FGAT NEMOVAR

Observations: Temperature, unbalanced salinity, unbalanced sea surface height

Number of observations (m): 2× 105

Number of state variables (n): 8× 106

Computation: 8 processors are used
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Dual Approach

Second level preconditioning

Use an approximation of the Hessian of the quadratic problem
→ Limited Memory preconditioning (Fisher (1998), Morales
and Nocedal (2000), Tschimanga, Gratton, Sartenaer, Weaver
(2008))

The idea is:

1 Formulate the limited memory Quasi-Newton matrix

2 Generate the preconditioner using the information from CG
iterations.

For equivalence with the primal method, find G that satisfies

FHT = BHTG

for a given F

For now, assume that H is not changing for each outer loop.
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Dual Approach

G as a Quasi-Newton warm-start preconditioner

Formulation of F as a Quasi-Newton Limited Memory Preconditioner

Fk+1 = (I − τkpkqTk )Fk(I − τkqkpTk ) + τkpkp
T
k

pk is the search direction
τk = 1/(qTk pk)
qk = (B−1 +HTR−1H)pk

Formulation for G as a Quasi-Newton Limited Memory Preconditioner

Gk+1 = (I − τ̂kp̂k(Mq̂k)
T )Gk(I − τ̂kq̂kp̂TkM) + τ̂kp̂kp̂

T
kM

M = HBHT ,
p̂k is the search direction,
τ̂k = 1/(q̂TkHBH

T p̂k)
q̂k = (Im +R−1HBHT )p̂k
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Dual Approach

Computationally efficient RPCG algorithm using
Quasi-Newton Preconditioner

Loop: WHILE

1 q̂i−1 = R−1ti−1 + p̂i−1

2 αi−1 = wT
i−1r̂i−1 / q̂

T
i−1ti−1

3 λ̂i = λ̂i−1 + αi−1p̂i−1

4 r̂i = r̂i−1 − αi−1q̂i−1

5 l̂i = HBHTr̂i
6 ẑi = Gr̂i
7 wi = GT l̂i
8 βi = wT

i r̂i /w
T
i−1r̂i−1

9 p̂i = ẑi + βip̂i−1

10 ti = wi + βiti−1

11 mqi−1 = (li−1 − li−2)/αi−1

1 Consider a new vector l is defined as

li = HBH
T
r̂i

2 ẑi = Gr̂i and wi = HBHT ẑi

3 HBHTG is symmetric (HFHT = HBHTG)

wi = HBH
T
Gr̂i = G

T
HBH

T
r̂i = G

T
li

4 Multiply the expression r̂i = r̂i−1 − αiq̂i with

HBHT gives

HBH
T
q̂i = (li − li−1)/αi
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Dual Approach

Convergence Properties

If FA has eigenvalues µ1 ≤ µ2 ≤ ... ≤ µn, PCG algorithm satisfies the
inequality:

‖xk+1 − x∗‖A ≤ 2(

√
µn −

√
µ1√

µn +
√
µ1

)k ‖x∗‖A

If GÂ has eigenvalues ν1 ≤ ν2 ≤ ... ≤ νm, RPCG satisfies the inequality:

‖xk+1 − x∗‖A ≤ 2(

√
νm −

√
ν1√

νm +
√
ν1

)k ‖x∗‖A

‖xk+1 − x∗‖A ≤ 2(

√
νm −

√
ν1√

νm +
√
ν1

)k ‖x∗‖A ≤ 2(

√
µn −

√
µ1√

µn +
√
µ1

)k ‖x∗‖A

Same iterates, but tighter bound on convergence rate with the dual
approach

Improvement of tightness can be arbitrarily large on purposely chosen
problems
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Dual Approach

When H changes!

When H changes in nonlinear iterations, FHT = BHTG is not
satisfied. The preconditioner is not symmetric anymore wrt HBHT

and perturbed CG is in trouble.

Expression for G

Gk+1 = (I − τ̂kp̂k(Mq̂k)
T )Gk(I − τ̂kq̂kp̂TkM) + τ̂kp̂kp̂

T
kM

M = HBHT , τ̂k = 1/(q̂TkHBH
T p̂k), q̂k = (Im +R−1HBHT )p̂k
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Dual Approach

Solutions (1/2)

Straigthforward approach: re-generate G by using the recent
pk and HBHT : costs one matvec per preconditioning pair

Accept to handle non symmetry : use FOM algorithm
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Dual Approach

Solutions (2/2)

Use FOM with Quasi-Newton preconditioner G where
approximated M is used.

Approximation with the Davidon Fletcher Powell (DFP)
formula.
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Conclusions

Conclusions

We have dual space methods RPCG and RLanczos that generate
the same iterates as PCG and Lanczos in primal space

B1/2 operator is not required with the proposed primal solvers for B
preconditioning

RPCG and RLanczos were implemented in realistics systems:
NEMOVAR thanks to Anthony Weaver and Andrea Piacentini,
ROMS thanks to Andy Moore.

Preconditioning is possible: find G such that FHT = BHTG
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Conclusions

Thank you for your attention !
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