Estimates of analysis error, forecast error, and predictability using the adjoint of 4D-Var

> Andy Moore, UC Santa Cruz Hernan Arango, Rutgers University Gregoire Broquet, LMCE, Paris

<u>Outline</u>

- Analysis error covariance
- TL and AD of 4D-Var
- Functions of the state vector
- Examples for the California Current
- Forecast errors (and predictability)

Expected Analysis Error

- Analysis: $\mathbf{x}_{a} = \mathbf{x}_{b} + \mathbf{K}\mathbf{d}$ Innovations: $\mathbf{d} = (\mathbf{y} - H(\mathbf{x}_{b}))$ Gain: $\mathbf{K} = \mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}$ Analysis error covariance:
- $\mathbf{A} = (\mathbf{I} \mathbf{K}\mathbf{H})\mathbf{B}(\mathbf{I} \mathbf{K}\mathbf{H})^{\mathrm{T}} + \mathbf{K}\mathbf{R}\mathbf{K}^{\mathrm{T}}$ In general: $\mathbf{K} \to \tilde{\mathbf{K}}$ (the "practical gain" matrix) $\tilde{\mathbf{A}} = (\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H})\mathbf{B}(\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H})^{\mathrm{T}} + \tilde{\mathbf{K}}\mathbf{R}\tilde{\mathbf{K}}^{\mathrm{T}}$

Practical Estimates of A

- Reduced rank approx of A (e.g. Fisher & Courtier, 1995)
 over estimates expected errors
- Ensemble Kalman Filters

 Iocalization and inflation issues
- Ensemble 4D-Var (e.g. Belo Pereira & Berre, 2006)
 - ensemble covariance mimics A
 - computationally demanding

TL and AD of 4D-Var

Analysis:
$$\mathbf{x}_{a} = \mathbf{x}_{b} + \mathcal{K}(\mathbf{d}, p_{a}, p_{m})$$

Inspired by ensemble 4D-Var: $\delta \mathbf{x}_{a} \simeq (\partial \mathcal{K}/\partial \mathbf{d}) \delta \mathbf{d}^{\checkmark \mathbf{x}_{b}}$ with covariance B

Expected analysis error covariance:

 $\hat{\mathbf{A}} = \left\langle \delta \mathbf{X}_{\mathbf{a}} \delta \mathbf{X}_{\mathbf{a}}^{\mathrm{T}} \right\rangle$ $\hat{\mathbf{A}} = \left(\mathbf{I} - \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}} \right) \mathbf{H} \right) \mathbf{B} \left(\mathbf{I} - \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}} \right) \mathbf{H} \right)^{\mathrm{T}}$ $+ \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}} \right) \mathbf{R} \left(\frac{\partial \mathcal{K}}{\partial \mathbf{d}} \right)^{\mathrm{T}}$

At limit of convergence: $(\partial \mathcal{K} / \partial d) = K$

Expected Analysis Errors of Functions

Linear scalar functions:

$$\mathcal{J}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$

Quadratic scalar functions: $\mathcal{J}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{L} \mathbf{x}$ (e.g. eddy kinetic energy)

For linear functions:

Prior error variance

(e.g. transport, heat content)

$$(\sigma_{\mathcal{J}}^{\mathbf{b}})^2 = \mathbf{w}^{\mathrm{T}} \mathbf{B} \mathbf{w}$$

Posterior error variance

$$(\sigma_{\mathcal{J}}^{\mathbf{a}})^2 = \mathbf{w}^{\mathrm{T}} \mathbf{A} \mathbf{w}$$

A is given by \hat{A} or \tilde{A}

No Ensembles Were Harmed in these Calculations

Results pertain to an infinite theoretical ensemble

ROMS: California Current System (CCS)

(Regional Ocean Modeling System)

- ROMS: PE, hydrostatic, sigma
- 30 km, 30 levels
- 4D-Var: Dual, 1 outer, 60 inner 40-
- Minimum residual descent
- Control vector: $\mathbf{x}(0)$, $\mathbf{f}(t)$, $\mathbf{b}(t)$
- COAMPS forcing, f_b(t)
- ECCO open b.c.s, $b_b(t)$
- **Prior** $\mathbf{x}_{\mathbf{b}}(0)$ from previous cycle ³⁴
- 7 day assimilation cycles
- July 2002 Dec. 2004

Veneziani et al (2009) Broquet et al (2009a,b, 2011) Moore et al (2011a,b,c)

Convergence Properties of \tilde{A} and \hat{A}

$$\tilde{\mathbf{A}} = \left(\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H}\right)\mathbf{B}\left(\mathbf{I} - \tilde{\mathbf{K}}\mathbf{H}\right)^{\mathrm{T}} + \tilde{\mathbf{K}}\mathbf{R}\tilde{\mathbf{K}}^{\mathrm{T}}$$
$$\hat{\mathbf{A}} = \left(\mathbf{I} - \left(\frac{\partial\mathcal{K}}{\partial\mathbf{d}}\right)\mathbf{H}\right)\mathbf{B}\left(\mathbf{I} - \left(\frac{\partial\mathcal{K}}{\partial\mathbf{d}}\right)\mathbf{H}\right)^{\mathrm{T}} + \left(\frac{\partial\mathcal{K}}{\partial\mathbf{d}}\right)\mathbf{R}\left(\frac{\partial\mathcal{K}}{\partial\mathbf{d}}\right)^{\mathrm{T}}$$
$$\stackrel{\sim}{=} \tilde{\sigma}_{\mathrm{a}}^{2}/\sigma_{\mathrm{b}}^{2} \quad \bullet \quad \hat{\sigma}_{\mathrm{a}}^{2}/\sigma_{\mathrm{b}}^{2} \quad - J$$

Prior and Posterior Errors

$$\frac{\text{Expected Forecast Errors}}{\mathbf{P}^{f}} \simeq \mathbf{M}_{f} \mathbf{D} \mathbf{M}_{f}^{T} \quad \mathbf{D} = \text{diag} \left(\mathbf{M}_{a} \hat{\mathbf{A}} \mathbf{M}_{a}^{T}, \mathbf{B}_{f}, \mathbf{B}_{b} \right)$$
$$\left(\sigma_{\mathcal{J}}^{f} \right)^{2} = \mathbf{w}^{T} \mathbf{P}^{f} \mathbf{w}$$

Analogous to obs impact (Langland & Baker; Errico; Gelaro et al)

Final Remarks

- One integration of $(\partial \mathcal{K}/\partial \mathbf{d})^{\mathrm{T}}$ per function
- Consistency checks:

$$\begin{split} \mathcal{J}^{\mathbf{a}} - \mathcal{J}^{\mathbf{b}} &\sim N\left(0, \left(\sigma_{b}^{2} - \sigma_{a}^{2}\right)^{1/2}\right) \\ \end{bmatrix} & \pm 2\left(\sigma_{b}^{2} - \sigma_{a}^{2}\right)^{1/2} \text{ (69-82\%)} \\ \end{bmatrix} \\ \mathcal{J}^{\mathbf{f}} - \mathcal{J}^{\mathbf{a}} &\sim N\left(0, \sigma^{f}\right) \\ & \pm 2\sigma^{f} \quad \text{46\%} \left(\mathcal{J}_{\text{SST}}\right) \quad \text{91\%} \left(\mathcal{J}_{\text{37N}}\right) \\ & \rightarrow \text{reliability} \end{split}$$

- Extension to quadratic functions
- $(\partial \mathcal{K}/\partial d)^{T}$ can predict change in error covariance due to withhold obs \rightarrow optimal array design

Lanczos Factorization

$$\tilde{\mathbf{K}} \approx \mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{V}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \qquad \begin{array}{c} \mathsf{Dual form} \\ \mathsf{m} < \mathsf{N}_{\mathsf{obs}} \end{array}$$

 $\mathbf{V}_{\mathbf{m}}$ is the matrix of orthonormal Lanczos vectors \mathbf{m} is the number of inner-loops

$$\begin{split} \delta \mathbf{X}_{\mathbf{a}} &\simeq \left(\partial \mathcal{K}/\partial \mathbf{d}\right) \Delta \mathbf{d} \simeq \mathbf{B} \mathbf{H}^{\mathrm{T}} \mathbf{V}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \Delta \mathbf{d} + \begin{array}{c} \underset{\text{Lanczos}}{\overset{\text{Lanczos}}{(1893-1974)}} \\ \mathbf{B} \mathbf{H}^{\mathrm{T}} [\mathbf{V}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} \Delta \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \dots \\ &+ \mathbf{V}_{\mathrm{m}} \Delta \mathbf{W}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \dots \\ &+ \mathbf{V}_{\mathrm{m}} \Delta \mathbf{W}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}} \dots \\ &+ \left[\Delta \mathbf{V}_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} \mathbf{V}_{\mathrm{m}}^{\mathrm{T}}\right] \mathbf{d} \end{split}$$
The perturbed Lanczos vectors $\Delta \mathbf{V}_{\mathrm{m}}$ span obs space via $\left\langle \mathbf{\bullet} \right\rangle$

Perturbation Lanczos Vectors

m orthonormal Lanczos vectors in obs space where $m << N_{obs}$

Perturbed Lanczos vectors (via <>) more effectively span obs space