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Abstract 

   MERRA reanalysis products were used to force an established ocean biogeochemical model to 

estimate carbon inventories and fluxes in the global oceans.  The results were compared to public 

archives of in situ carbon data.  The model exhibited considerable skill for ocean carbon 

inventories, i.e., dissolved inorganic carbon (DIC), and partial pressure of ocean CO2 (pCO2).  

For DIC, the model produced a global mean difference of 0.1% (approximately 1.8 µM) and 

basin-scale distributions were significantly correlated with observations (r=0.98, P<0.05).  The 

model produced a global mean difference in pCO2 of 0.2% (about 0.6 µatm) with positive 

correlation across oceanographic basins (r=0.71, P<0.05).  Although model estimates of carbon 

flux (fCO2) were within 35% of data, there was not a statistically positive correlation across 

ocean basins (r=0.51, NS).  More troubling was the representation on the North Pacific and 

Antarctic basins as net sources of carbon to the atmosphere instead of a net sink indicated in the 

data and suggested by other efforts.  Inadequate carbon uptake by biological primary production 

was the main cause of the excess carbon estimated by the model in the North Pacific, coupled 

with excessive convective overturn and local upwelling bringing high DIC concentrations from 

the deep ocean to the surface.  In the Antarctic, most of the discrepancy was attributed to issues 

resulting from data scaling (using point observations to construct large scale representations), 

and inconsistencies between data sets of DIC and those of pCO2 and carbon flux.  Although the 

model results were encouraging for DIC and pCO2, the flux results suggested model deficiencies 

 1



and also that large scale representations of data must be used cautiously when comparing with 

models.  The results also suggested that MERRA is a viable source of forcing information for 

global ocean biogeochemical models with respect to carbon estimates. 

 

Introduction 

   The oceans play a critical role in the global carbon cycle.  More than 90% of the active non-

geological carbon pool resides in the oceans (Kaufman, 1998).  Estimates of global primary 

production suggest that the oceans contribute about half (Field et al., 1998).  One quarter 

(LeQuéré et al., 2010) to nearly one half (Sabine et al., 2004) of the carbon emitted by 

anthropogenic sources is thought to be sequestered in the oceans.   Understanding the role of the 

ocean in the global carbon cycle is a driving question in modern Earth science.  It requires 

foremost a geographically-distributed, well-maintained observational capability.  We are 

fortunate that such a capability exists or is in development, and that global data sets of ocean 

carbon inventories (Key et al., 2004), partial pressure of CO2 (Takahashi et al., 2006; 2009) and 

atmospheric exchange (Takahashi et al., 2006; 2009) are publicly available. 

   Numerical models containing explicit descriptions of the exchanges of carbon among 

biological and chemical constituents, and interacting with the atmosphere, can also assist in 

furthering the understanding of global ocean carbon cycling.  Furthermore, such models can 

potentially aid in the forecasting of changes in the ocean carbon cycle based on anthropogenic 

and natural influences.  Global ocean carbon models require external information to drive the 

ocean circulation dynamics that determine the distributions and abundances of carbon as well as 

biological and chemical constituents that play a role in the ocean carbon cycle.  An ocean model 

of carbon dynamics is only as good as the fields needed to force it.  These forcing fields typically 

come from publicly available reanalysis products (e.g., LeQuéré et al., 2010; Gorgues et al., 

2010; Doney et al., 2009).   

  The Modern-Era Retrospective analysis for Research and Applications (MERRA) project 

represents a next generation of reanalysis products.  Utilizing data from NASA Earth observing 

satellites, MERRA is intended to improve upon the widely recognized set of existing reanalysis 

products, primarily by including a more realistic representation of the hydrological cycle 

(Rienecker et al., 2011, this issue).  A comprehensive approach using advanced data assimilation 
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methodologies and modern Earth remote sensing observations, along with state of the art 

atmospheric and hydrological models, MERRA is expected to fully support climate-related 

modeling efforts. 

   Here we use MERRA reanalysis products to force a global ocean biogeochemical model.  We 

seek to 1) simulate the distributions and fluxes of carbon components in the global oceans with 

an explicit, prognostic description of the carbon cycle and 2) evaluate the realism of the model 

results.  The simulation is accomplished using an established three-dimensional model of the 

global oceans containing prognostic representations of biological and chemical constituents 

involved in the ocean carbon cycle.  Evaluation is achieved through comparison with 

observations of carbon inventories and fluxes.   

 

Methods 

Global Three-Dimensional Circulation Model  

   Global ocean carbon dynamics are simulated by the NASA Ocean Biogeochemical Model 

(NOBM; Figure 1).  It is a three-dimensional representation of coupled 

circulation/biogeochemical/ radiative processes in the global oceans (Gregg et al., 2003; Gregg 

and Casey, 2007).  It spans the domain from –84o to 72o latitude in increments of 1.25o longitude 

by 2/3o latitude, including only open ocean areas, where bottom depth>200m.  The 

biogeochemical processes model contains 4 phytoplankton groups, 4 nutrient groups, a single 

herbivore group, and 3 detrital pools (Figure 2).  The phytoplankton groups differ in maximum 

growth rates, sinking rates, nutrient requirements, and optical properties.  The 4 nutrients are 

nitrate, regenerated ammonium, silica to regulate diatom growth, and iron.  Three detrital pools 

provide for storage of organic material, sinking, and eventual remineralization back to usable 

nutrients.   

   Carbon cycling involves dissolved organic carbon (DOC) and dissolved inorganic carbon 

(DIC; Figure 2).  DOC has sources from phytoplankton, herbivores, and carbon detritus, and a 

sink to DIC.  DIC has sources from phytoplankton, herbivores, carbon detritus, and DOC, and 

communicates with the atmosphere, which can be either a source or sink.  The ecosystem sink 

for DIC is phytoplankton, through photosynthesis.  This represents the biological pump portion 

of the carbon dynamics.  The solubility pump portion is represented by the interactions among 

temperature, alkalinity (parameterized as a function of salinity), silica, and phosphate 
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(parameterized as a function of nitrate).  The alkalinity/salinity parameterization utilizes the 

spatial variability of salinity in the model adjusted to mean alkalinity  

                                                          TA = TA S/S 

where TA is total alkalinity and S is salinity.  The underscore represents global mean values.  TA 

is specified as 2310 µE kg-1.  The phosphate/nitrate parameterization involves multiplying the 

model nitrate by 0.1, which is derived from the global mean ratio from the National 

Oceanographic Data Center (Conkright et al., 2002) for the top three standard levels.  The 

calculations for the solubility pump follow the standards set by the Ocean Model 

Intercomparison Project (OCMIP; www.ipsl.jussieu.fr/OCMIP).  We employ a lookup table 

specified over modern ranges of DIC, salinity, temperature, and nutrients for computational 

efficiency, at no cost to accuracy. 

   NOBM undergoes spin-up for 35 years under climatological forcing.  Initial conditions for DIC 

are derived from the Global Data Analysis Project (GLODAP; Key et al., 2004).  We average 

DIC over oceanographic basins and depth and use these mean values for initial conditions.  A 

maximum deep value of 2330 μM is enforced (Goyet et al., 2000).  DOC initial conditions are 

set to 0 µM.  Other initial conditions are described in Gregg and Casey (2007).   

 

Data Sets 

Forcing Data Sets 

   Forcing data sets are shown in Figure 1.  Monthly climatologies are used in all cases.  All except 

soil dust (iron), ozone, clouds, and atmospheric CO2 are obtained from MERRA products.  Ozone is 

from the Total Ozone Mapping Spectrometer, and soil dust deposition is from Ginoux et al. (2001).  

Cloud data (cover and liquid water path) are obtained from the International Satellite Cloud 

Climatology Project.  Atmospheric CO2 is taken from the Lamont-Doherty Earth Observatory 

(LDEO) data set (Takahashi et al., 2009), using a mean over the entire range of observations of 

358.7 µatm. 

Comparison Data Sets 

   The main outputs of interest in this effort are dissolved inorganic carbon (DIC), representing 

the inventory of total CO2 stored in the oceans, partial pressure of CO2 (pCO2), and the flux of 

CO2 (fCO2), representing the exchange of carbon between the atmosphere and ocean (positive is 

defined upward, indicating a source to the atmosphere).  DIC data sets are obtained from 
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GLODAP (Key et al., 2004), which are mapped on a 1o horizontal grid with 33 standard depth 

levels (http://cdiac.ornl.gov/oceans/glodap/).  pCO2 and fCO2 data sets are mapped on a 5o 

longitude by 4o latitude horizontal grid and are surface only.  They are obtained from LDEO   

(http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/index.html; Takahashi et al., 2009). 

   We also derived an alternative representation of pCO2 and fCO2 from GLODAP DIC using the 

OCMIP protocols.  This enables us to understand the consistency between the publicly available 

ocean carbon data archives.  Here we require several data sets, including wind speed, SST, and 

sea level pressure, which are obtained from MERRA, nitrate (a proxy for phosphate like in the 

model), salinity and silica, which are obtained from NODC.  Atmospheric pCO2 is used as for 

the model, a constant value representing the mean of the LDEO observations. 

Methodological Approach 

   The global model NOBM is forced with the MERRA variables shown in bold in Figure 1.  The 

model is spun up for 34 years using monthly climatologies of MERRA forcing.  In the 35th year 

of simulation, model results of surface DIC, pCO2, and fCO2 are compared graphically and 

statistically with climatological in situ data sets from GLODAP and LDEO.  Results are 

evaluated globally and regionally in 12 major oceanographic basins (Figure 3).  Statistical 

comparisons include global and basin differences between model and data global and regional 

means, expressed as percent, and correlation analysis.  Our emphasis is on large scale results, so 

our correlation analysis is performed across the basins (so that N=12, with 10 degrees of 

freedom).  All analyses here are performed for annual mean results, and the data sets are 

converted to the NOBM spatial grid prior to comparison. 

   We are also interested how fording fields affect the estimate of global carbon.  We run NOBM 

using reanalysis products from the NOAA/National Center for Environmental Prediction (NCEP; 

Kalnay et al., 1996).  We also use data from LDEO in a third forcing test of the model.  This is 

only partial in terms of forcing fields, as only sea surface temperature, sea level pressure, and 

wind speed are available in the data set.  The remaining variables required from Figure 1 are 

from MERRA.   

 

Results 

Comparison of NOBM Carbon with Data Sets 

 5

http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/index.html


   Surface DIC from NOBM compares favorably with in situ data (Figure 4).  There is substantial 

geographical similarity, and basins follow similar patterns.  The global difference is 0.1%, with a 

correlation across basins of 0.98, which is statistically significant at P<0.05.  The most notable 

differences are the tropical upwelling regions.  Upwelling in the Equatorial Pacific is not 

apparent in the in situ data, while it is prominent in the model.  The in situ data show a 

depression in DIC in the Equatorial Atlantic upwelling region, which is in contrast to an increase 

seen in the model.  The basin mean, however, is in agreement.  There is less disagreement in the 

North and Equatorial Indian basins, but there is lower DIC in the western portions in the model, 

and somewhat more in the eastern portion. 

   There is also considerable similarity between the model and in situ data in global pCO2 

distributions (Figure 5).  The global difference is 0.2% and the correlation across basins is 

statistically significant with r = 0.71.  The model pCO2 distributions are in agreement in the 

tropical Pacific upwelling, in contrast with DIC, and there is no depression in the tropical 

Atlantic in the data.  The model shows an enhancement of pCO2 in the Equatorial Atlantic 

upwelling, similar to the DIC.  There is an east-west departure in the North and Equatorial Indian 

basins between the model and data, as with DIC, with lower values in the model in the west, and 

higher values in the east.  The largest discrepancy is the South Atlantic, where the model pCO2 is 

28 µatm lower than the data, which represents a 7.8% difference.  There is also a region of 

depressed pCO2 in the northeastern South Pacific, which does not appear in the data.  The 

Antarctic pCO2 in the model is higher than the data by about 7.8 µatm, which is about 2.2%. 

   There are many areas of agreement in the flux of CO2 (fCO2) between the model and data, but 

there are also many areas of disagreement and they are more pronounced than with DIC and 

pCO2 (Figure 6).  The global difference is nearly 35%, representing 0.12 mol C m-2 y-1.  

Furthermore, the basin correlation is not statistically significant.  There are two basins where the 

sign of the flux is different: the Antarctic and the North Pacific (Figure 6).  A large difference 

between the model and data occurs in the South Atlantic.  However, the sign of the flux here is 

the same. 

   A scatterplot (Figure 7) reinforces the difference in model and data carbon flux by basin.  The 

two basins where the sign of the flux is reversed are clearly apparent in the first quadrant, but all 

the other basins are in the proper quadrant.  The tropical basins are clustered in the second 

quadrant, indicating positive flux (source) to the atmosphere.  The remaining basins are all 
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negative flux, representing a sink of CO2 from the atmosphere, although there are differences in 

the amounts.   

Comparison between Model Forced by MERRA and Forced by NCEP and LDEO 

   Basin and global means of fCO2 from the model forced by MERRA are compared to the same 

model forced by NCEP and LDEO (Figure 8), illustrating generally close agreement.  The largest 

departures are in the North and South Indian basins.  These results reinforce the basin annual 

means shown earlier (Figure 6).  These patterns are preserved regardless of the choice of forcing 

between MERRA, NCEP, or LDEO.  Stronger agreement is achieved for DIC, where the 

differences in forcing produces basin changes <3 µM, and for pCO2, for which the maximum 

basin change is <4 µatm and the global difference is within 1 µatm, regardless of the forcing 

source (data not shown). 

Comparison between Carbon Data Sets 

   Using surface DIC data from GLODAP (Key et al., 2004) along with climatologies of surface 

variables we are able to construct an estimate of fCO2 consistent with the GLODAP data set.  

Global and basin distributions and means of fCO2 from GLODAP DIC indicate major departures 

from the in situ data sets of Takahashi et al. (2009) (Figure 9).  GLODAP-derived fCO2 is 

considerably lower than the data in the North Atlantic, and much higher in the Antarctic.  The 

North Pacific, Antarctic, and South Atlantic basins exhibit stronger correspondence with the 

model than with the data.  The North Atlantic fCO2 is a very strong sink as represented by 

GLODAP, so much that it is off-scale in Figure 9.  The South Indian also shows a strong sink, 

although less so, and is in disagreement with the model estimates and data. 

 

Discussion 

   The MERRA-forced model (NOBM) produces remarkable agreement with in situ data sets for 

DIC and pCO2.  The global mean difference is 0.1% and 0.2%, respectively, and both show 

statistically positive correlation with data (P<0.05) across the 12 major oceanographic basins.  

We acknowledge that that agreement for DIC is perhaps not surprising, since it was used for 

initial conditions.  But the ability of the model to hold these large scale distributions, and also 

exhibit substantial agreement with smaller scale distributions (Figure 4), suggests that NOBM, 

forced by MERRA atmospheric and oceanic variables, possesses considerable skill for 

simulating ocean carbon inventories. 
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   The agreement of the MERRA-forced model with data for DIC and pCO2 is not repeated as 

strongly for carbon fluxes (fCO2).  A larger global mismatch is observed (about 35%) and the 

basin correlation is not statistically significant at P<0.05 (Figure 6).   

   The model exhibits skill in the fCO2 comparison, however, such as the tropical basins and 

North Atlantic (Figure 6).  Also smaller scale regions in the South Indian and South Pacific 

where a large sink occurs are in agreement, as well as the sink area near 30o in the northern 

Pacific.  Globally the 35% difference does not produce a change in sign and can be considered 

relatively small. 

   However, there is considerable uncertainty in the flux estimates as represented by the standard 

deviation both globally and on basin scales.  The model exhibits larger uncertainty, but the lower 

values in the data are likely a result of the smoothing to 5o longitude by 4o latitude in the data 

(Takahashi et al., 2009), along with considerable large scale gap-filling (Takahashi et al., 2009).  

It is most disconcerting that two basins, the Antarctic and the North Pacific, have an opposite 

flux (source to the atmosphere) in contrast to the data (sink to the ocean). 

   We note that, our basin correlation holds small N (12, with 10 degrees of freedom), making it 

difficult to obtain statistical confidence.  We are most interested in the model skill at global and 

basin scales, however, and consider this approach appropriate.  However, we note that at a one-

to-one matchup at the model grid scale (1.25o longitude by 0.67o latitude) we obtain statistically 

positive correspondence with data for fCO2 with admittedly low correlation coefficient (r=0.38, 

P<0.05, N=38885, data not shown). 

   Since DIC is a strong contributor to pCO2, and pCO2 is a strong contributor to fCO2, the results 

suggest that skill in reproducing ocean carbon constituents does not necessarily translate to skill 

in reproducing ocean carbon fluxes.  Small discrepancies between model and data in DIC and 

pCO2 can produce important differences in fCO2.  Thus fCO2 is sensitive to small errors in DIC 

and pCO2.   

   The largest basin discrepancies in carbon flux between model and data are the Antarctic and 

North Pacific, where NOBM suggests a source and the data indicate a sink (Figures 6 and 7).  

Most other work using models, inversions, and data support the data results shown here (Gruber 

et al., 2009).  The South Atlantic represents a more minor discrepancy because the estimated flux 

has same sign as the data (Figure 6).  However, it is much more extreme.  There are of course 

several local differences but we focus here on the large scale problems. 
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   We attempt to explain these large scale model-data discrepancies by emphasizing 4 main 

possible causes: 

1) Data scaling  

2) Differences in forcing fields 

3) Inconsistencies between data sources, specifically LDEO and GLODAP 

4) Model issues 

Data Scaling 

    Public data sets of pCO2 and fCO2 (Takahashi et al., 2009) are taken from point measurements 

in the ocean, gridded to 5o longitude by 4o latitude, binned to an annual mean climatology, and 

with residual gaps filled.  Additionally, years corresponding to El Niño events are excluded for 

the tropical Pacific (Takahashi et al., 2009).  Each of these steps potentially introduces a bias in 

the final result, which we refer to here as data scaling issues.  Binning to a coarse grid reduces 

variability and over-represents the influences of observation points closest to gaps.  Constructing 

annual means where data exist for only a few months creates an unbalanced representation, with 

the sampled months over-represented.  If the sampled months occur at a low or high point in the 

seasonal cycle, the problem is exacerbated.  A typical example is sampling only in January in the 

Southern Ocean, when temperatures and primary production are highest.  Filling gaps, like 

binning to a coarse grid, over-represents the influence of observations nearest the gaps unless 

methods are actively used to reduce this problem.  Takahashi et al. (2009) used an interpolation 

scheme based on assumed advective transport.  Finally, removing El Niño events in the tropical 

Pacific over-represents La Niña events in the climatology. 

   However, shipboard underway data at the location of data measurement, ungridded, with 

temporal sampling identified, with sampling gaps preserved, and inclusive of all years sampled, 

are also available (http://cdiac.ornl.gov/ftp/oceans/LDEO_Database/Version_2009/).  Using 

these raw observations we can re-construct the representation of pCO2 data at our model grid.  

By sub-sampling the model by the data locations, we can remove the mismatches due to data 

scaling, and produce an unbiased, one-to-one comparison.  The resulting images show the 

sparseness of the sampling and suggest the potential for biases through the data scaling efforts 

(Figure 10). 

   Focusing on the basins with the worst data comparisons, we see that about 40% of the 

difference in pCO2 in the Antarctic is due to data scaling (Figure 11).  This suggests data scaling 
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is a large contributor to the model-data difference here, but does not completely explain it.  The 

North Pacific exhibits less proportion of the difference due to scaling, about 21%, but again the 

scaling is a contributor to the difference.  Nearly 70% of the discrepancy observed in the South 

Atlantic, another problem area in the comparison, is explained by data scaling.  This suggests 

that the binning to 5o by 4o in the gridded data sets produces a representation of higher pCO2 than 

is indicated by the raw data.  Interestingly, the data scaling analysis suggests that model-data 

discrepancies are masked by the gridded representations in the Equatorial Indian and to a lesser 

extent the Equatorial Pacific.  Overall the sub-sampled model-data comparison shows a 

statistically positive global correlation (r=0.33, P<0.05, bias=7.1, RMS=40.4, N=24449) 

   Carbon flux estimates are not available in the raw data from LDEO, but we can estimate them 

from pCO2 and climatological ocean and atmospheric variables using the OCMIP protocols, 

similar to the way fCO2 is computed by the model.  The required variables are silica, nitrate (a 

proxy for phosphate), salinity, temperature, wind speed, sea level pressure, and atmospheric 

pCO2.  While all of these are derived from or force the model in the model derivation of fCO2, 

we use data climatologies here to estimate fCO2 from the LDEO pCO2 point measurement data.  

In this case, nitrate and silica are taken from NODC, and the rest from LDEO to retain as much 

consistency as possible. 

   The fCO2 results suggest that data scaling plays a major role in the estimated differences 

between the model and data (Figure 11).  For the Antarctic, the difference between the model 

and data fCO2 nearly disappears when scaling issues are removed.  This does not mean that the 

data now suggest a source rather than a sink, as the model does, because the basin mean fCO2 is 

still negative in the data.  However, it is only slightly so (-0.005 mol m-2 y-1) and the sub-

sampled model has declined from 0.42 to 0.13 mol m-2 y-1.  However, the dramatic reduction in 

the difference suggests a strong influence of data scaling issues in the full model and data 

comparisons.  The other major problem basin, the North Pacific, also exhibits major 

improvement when scaling differences are accounted for.  Here the difference falls to less than 

half the full representation (Figure 11).  Like the pCO2 results, the scaling appears to contribute 

about 70% of the model-data difference seen in the South Atlantic in the full model-data 

comparisons.  Strikingly, the previous discrepancy observed in the South Pacific has now 

virtually disappeared when scaling issues are removed.  Overall the sub-sampled model-data 
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comparison shows a statistically positive global correlation (r=0.33, P<0.05, bias=0.098, 

RMS=1.04, N=25012) 

Forcing Data 

   Forcing data are critical for the proper evolution of a forward biogeochemical model, and the 

use of MERRA data sets can potentially contribute to the representation of carbon inventories 

and fluxes observed here.  Other ocean carbon modeling efforts have typically utilized NCEP 

forcing data (e.g., LeQuéré et al., 2010, Doney et al., 2009; McKinley et al., 2004), so we 

compare our MERRA forced results from a separate model integration utilizing NCEP forcing 

(Figure 8).  The differences in resulting carbon fluxes, the most sensitive of the carbon 

representations, are small globally and in most basins.  An exception is the North Indian, which 

shows a larger discrepancy for the NCEP-forced model than the MERRA forced.  Differences 

between the forcing for DIC and pCO2 are even smaller than fCO2 (data not shown).  We 

conclude that the model results are relatively insensitive to the differences in forcing by MERRA 

and NCEP or LDEO, at least regarding ocean carbon estimates, and do not explain the major 

discrepancies in the model-data comparison observed here.  Similar results are obtained using 

LDEO forcing fields (Figure 8). 

Data Set Inconsistencies 

   NOBM, like many global ocean biogeochemical models (e.g., LeQuéré et al., 2010, Doney et 

al., 2009) uses GLODAP DIC data for initialization.  The initialization creates the inventory of 

DIC that is subsequently advected, diffused, taken up and given off by biological processes and 

exchanged with the atmosphere as a function of the pCO2 which is ultimately derived from it.  

One of the successes of the MERRA-forced NOBM is the close correspondence between the 

resulting DIC fields and the GLODAP data (0.1% global difference, correlation coefficient 

across ocean basins or 0.98, P<0.05; Figure 4), which should be regarded with some skepticism 

considering the use of GLODAP in the initial conditions.  But considering the complex processes 

affecting DIC inherent in the model, and that mean DIC over basins and depths are used for 

initial conditions, the results should also not be dismissed. 

   Here we ask how much the model discrepancies can be traced to the GLODAP DIC data set, 

and how much the DIC data set and the carbon pCO2 and flux data from LDEO are consistent.  

GLODAP-derived estimates of fCO2 show many areas of correspondence with LDEO data sets 

(Figure 9), such as subtropical South Indian and Pacific basins, the subarctic North Pacific, and 
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the North Atlantic in general.  Upwelling areas in the Equatorial Pacific and Atlantic are not 

apparent in the GLODAP-derived fCO2, as DIC was not apparent originally.  It is interesting that 

the model actually reconciles the missing GLODAP DIC-fCO2 equatorial upwelling, resembling 

more the LDEO distributions (Figures 6 and 9).  The Antarctic exhibits a major discrepancy. 

   In general, basin mean GLODAP-derived fCO2 agrees more with the model than with the 

LDEO data (Figure 9).  The positive carbon flux in the Antarctic estimated in the model is nearly 

replicated by GLODAP.  The high DIC represented by GLODAP and preserved by the model 

here is a major contributor to the discrepancy in carbon flux, and suggests and inconsistency 

between the GLODAP DIC and LDEO pCO2 and fCO2 data sets.  A similar agreement between 

model and GLODAP-derived fCO2 occurs in the South Atlantic and also similarly disagrees with 

LDEO suggesting inconsistency.  This pattern is similar in the North Pacific but less so.  While 

the basin mean GLODAP-derived fCO2 is more similar to the model than the data in the North 

Pacific, we note that the areas of high fCO2 are not similar.  The model is highest in the Sea of 

Okhotsk and western Bering Sea while the GLODAP fCO2 is highest in the central North 

Pacific, suggesting that high DIC is not a cause of the discrepancy between model and data 

carbon flux.  We note extremely high negative fluxes occur in the North Atlantic near the mouth 

of the Labrador Sea affecting the entire basin representation in the GLODAP-derived fCO2 that 

appears to be result of a convergence of anomalous climatological data and DIC. 

   Considering that the discrepancies in fCO2 observed in the Antarctic and South Atlantic are 

replicated in the GLODAP-derived fCO2, this suggests that the discrepancies are either partially 

derived from the GLODAP DIC initial conditions, or that similar data scaling issues reported 

earlier are also contributing to the GLODAP-LDEO fCO2 differences.  An alternate explanation 

is that there is a combination of these two influences.  However, the suggestion that there are 

inconsistencies between carbon representations of DIC by GLODAP and pCO2 and carbon 

fluxes by LDEO is a possibility. 

Model Issues 

   NOBM is an imperfect representation of carbon dynamics in the global oceans.  Although a 

considerable amount of the mismatches between the model and data can be attributed to data 

scaling and data set inconsistencies, errors in the model play an important role as well.  The most 

important discrepancy with the largest implications is the North Pacific, where the model 

indicates a source, deriving from too high pCO2.  We believe this is erroneous and is caused by 2 
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model flaws: 1) insufficient primary production and 2) excessive convective mixing of deep 

DIC.  Both of these errors occur especially in the northwest North Pacific and the Sea of Okhotsk 

(Figures 5-8).  Although on a basin scale the GLODAP-derived fCO2 also produced the 

erroneous carbon source, the location of the high pCO2 and DIC are not in the same place as the 

model.  The western North Pacific is an area of massive seasonal temperature variability 

resulting in deep convective mixing, and is also a region of local upwelling, both of which bring 

deep DIC initialized by the GLODAP data set to the surface, producing the high pCO2 and 

ultimately high carbon flux to the atmosphere.  Primary production appears to be suppressed in 

the model preventing uptake of this deep DIC.  Together these processes produce the ingredients 

for excessive surface carbon, which in turn produce the expression of carbon flux to the 

atmosphere.  Our evidence for the suggestion of inadequate primary production derives from the 

comparison of NOBM chlorophyll with estimates from remote sensing (Figure 12).  We believe 

primary production is suppressed by the radiative transfer model used in NOBM, since nutrients 

in the North Pacific are plentiful (data not shown). 

   Two other regions where we suggest model error predominates are the North and Equatorial 

Indian basins.  Here the data indicate a strong source to the atmosphere in the western portion, 

and a modest sink in the east.  The model shows the opposite.  In the model the strong sink in the 

western North and Equatorial Indian is due to very high primary production, depleting carbon 

from the surface layers through photosynthetic uptake.  The east is suppressed because of lack of 

nitrate.   

   These two basins are not the only regions where model error occurs in the estimation of ocean 

carbon inventories and fluxes.  There are many local discrepancies that must be explained by 

deficiencies in the model.  However, these two examples provide the most glaring examples of 

model flaws and have the most important implications for the model representation of global 

carbon dynamics and estimates. 

 

Summary 

   A global ocean biogeochemical model is forced by MERRA reanalysis products to estimate the 

state of ocean carbon inventories and fluxes.  The carbon estimates are quantitatively compared 

to in situ data sources.  The results suggest the model demonstrates considerable skill for ocean 
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total carbon inventories, expressed as dissolved inorganic carbon (DIC), and partial pressure of 

ocean CO2 (pCO2).  For DIC, the model produces a global mean difference of 0.1% 

(approximately 1.8 µM) and the basin-scale distributions are significantly correlated with 

observations (r=0.98, P<0.05).  Similarly, the model indicates a global mean difference in pCO2 

of 0.2% (about 0.6 µatm) with positive correlation across oceanographic basins (r=0.71, P<0.05).  

These encouraging statistical results are unfortunately somewhat misleading when considering 

carbon exchange with the atmosphere, which is highly sensitive to small discrepancies in DIC 

and pCO2.  For carbon flux (fCO2), we find less positive comparisons with in situ data: global 

mean difference of 35% (0.12 mol C m-2 y-1) and no statistically positive correlation across the 

oceanographic basins at a 95% confidence level (r=0.51, NS).  These discrepancies are primarily 

the result of issues in three ocean basins: the Antarctic, North Pacific, and South Atlantic.  The 

Antarctic and North Pacific are the most troubling because in the model they indicate a net 

source of carbon from the ocean to the atmosphere, while the data indicate a net sink.  The South 

Atlantic shows a large difference between model and data estimates, but the sign of the carbon 

flux is at least the same (net sink). 

   Forcing by MERRA reanalysis products does not appear to contribute to the observed 

discrepancies between the model and data.  When the model is forced by NCEP and LDEO 

products, the resulting carbon estimates are generally similar.  Instead, the departures appear to 

be a combination of model errors, data scaling issues in the in situ data, and inconsistencies 

between major public global archives of carbon inventories and fluxes in the oceans. 

   Insufficient uptake of carbon via primary production is the main cause of excessive carbon 

estimated by the model in the North Pacific.  This, coupled with high convective exchange of 

high carbon concentrations in deep water along the western portion of this basin and in the Sea 

of Okhotsk, along with local upwelling, produces high pCO2 and a net positive fCO2 to the 

atmosphere.  The model also appears to be the culprit for east-west local discrepancies in the 

North and Equatorial Indian basins.  However, in this case the model error is excessive primary 

production in the western portions of the basins, taking up more carbon than indicated by the 

data and producing a localized strong sink, in contrast with the observations. 

   Although the model formulation contributes to the discrepancies seen in other ocean basins, 

issues with data scaling and inconsistencies between data sets appear to play a more important 

role.  By data scaling we refer to the process of taking discrete point measurements, binning 
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them to a coarse grid, combining them temporally to produce annual means despite uneven 

sampling, and filling gaps.  Each of these steps potentially produces a bias in large scale data 

representations.  Data scaling appears to be a major contributor to the discrepancies between 

model and data fCO2 in the Antarctic. In addition there are data inconsistencies, namely that 

GLODAP observations of DIC and the resulting estimates of pCO2 and fCO2 do not agree with 

LDEO data sets of the same variables.  Since the model agrees with the GLODAP estimates of 

DIC, this inconsistency, coupled with data scaling issues, appears to explain the difference 

between the model and data here.  A similar convergence of issues in data scaling and data 

inconsistencies may be responsible for the model-data discrepancies in the South Atlantic. 

   We do not suggest that data scaling issues mean that the global scale representations of pCO2 

and fCO2 data are incorrect.  We simply point out that when comparing model results to data, it 

is important to compare as closely as possible to the actual data locations, and not where they 

have been expanded to represent large scale estimates. 

   A global ocean model forced by MERRA reanalysis products appears to be capable of 

producing reasonable estimates of global DIC and pCO2, but estimates of carbon flux have some 

issues.  However, these issues do not appear to be related to the MERRA products and the 

overall large scale agreement in many carbon variables suggests that MERRA is a quality source 

of atmospheric and surface ocean forcing products to support models of global ocean carbon. 
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