

Juno Hsu, Michael Prather, Philip Cameron-Smith, Alex Veidenbaum, & Alex Nicolau (2017), Geosci. Model Dev., 10, 2525-2545, doi: 10.5194/gmd-10-2525-2017.

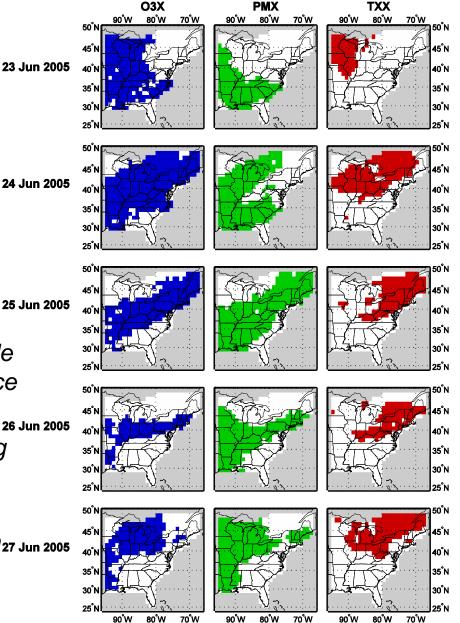
A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5.

Solar-J (2017) extends UCI's Cloud-J (a UV-Vis photolysis module) to full solar spectrum using RRTMG-SW for 0.7-12 μ m. Solar-J has the goal of delivering more accurate heating rates with comparably small errors in all components, unlike current GCM heating codes.

heating	Solar-J & photolysis rates		RRTMG-SW heating rates
Stratus Cloud	errors		errors
8-stream RT	1-2%*	2-stream RT	4-10%
<u>Clear sky heating (stratosphere)</u>			
Fast-J	0-4%*	RRTMG	~10%
<u>Clear sky heating (troposphere)</u>			
RRTMG adapted	1-4%	RRTMG	~0%
<u>High SZA (88-95°)</u>			
semi-spherical	<5%*	flat atmos.	>>5%
Fractional Cloud Cover			
Cloud-J quad.	1-2%	MC ICA	>10% rms

* Estimated values , for Solar-J it is based on previous model-model and model-measurement comparisons, for RRTMG it is relative to Solar-J or based on RRTMG publications.

Co-occurrence of extremes in ozone, particulate matter, and temperature


UCIrvine

J.L. Schnell and M.J. Prather (2017), PNAS, 114(11): 2854-2859, doi: 10.1073/pnas.1614453114

A new method for regular gridding of daily surface O_3 , $PM_{2.5}$ & T has developed a climatology for surface pollution and extremes for 1999-2013 (*Schnell et al. ACP 2014*).

This climatology has been used to define ^{24 Jun 2005} extreme episodes (95th %ile in summer).

- surface O3 (O3X)
- PM_{2.5} (PMX)
- temperature (TXX)
- Extreme episodes are 1000 km in scale and last days – see the 5-day sequence shown here.
- 2. They sometimes overlap (exacerbating health effects), but often do not.
- 3. Surprisingly ozone extremes (O3X) precede heat waves (TXX); stagnation_{27 Jun 2005} days are NOT a good predictor.

